【题目】某学校举行了一次安全教育知识竞赛,竞赛的原始成绩采用百分制.已知高三学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见表.
原始成绩 | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等级 | 优秀 | 良好 | 及格 | 不及格 |
为了解该校高三年级学生安全教育学习情况,从中抽取了名学生的原始成绩作为样本进行统计,按照的分组作出频率分布直方图如图所示,其中等级为不及格的有5人,优秀的有3人.
(1)求和频率分布直方图中的的值;
(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高三学生中任选3人,求至少有1人成绩是及格以上等级的概率;
(3)在选取的样本中,从原始成绩在80分以上的学生中随机抽取3名学生进行学习经验介绍,记表示抽取的3名学生中优秀等级的学生人数,求随机变量的分布列及数学期望.
【答案】(1) ;(2) ;(3)答案见解析.
【解析】试题分析:
(1) 由题意可知,样本容量,由频率分布直方图中小长方形面积之和为1可得.
(2)由题意可知,不及格的概率为0.1,由对立事件概率公式可得至少有1人成绩是及格以上等级的概率为;
(3)由题意可知原始成绩在80分以上的学生有人,优秀等级的学生有3人,则的取值可为0,1,2,3;计算相应的概率值可得, , , ,据此列出分布列,计算可得的数学期望为.
试题解析:
(1)由题意可知,样本容量,
,
∴.
(2)不及格的概率为0.1,设至少有1人成绩是及格以上等级为事件,∴,故至少有1人成绩是及格以上等级的概率为;
(3)原始成绩在80分以上的学生有人,优秀等级的学生有3人,
∴的取值可为0,1,2,3;
∴, ,
, ,
∴的分布列为
0 | 1 | 2 | 3 | |
.
科目:高中数学 来源: 题型:
【题目】已知奇函数(实数、为常数),且满足.
(1)求函数的解析式;
(2)试判断函数在区间上的单调性,并用函数单调性定义证明;
(3)当时,函数恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )
(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为半圆的直径,点是半圆弧上的两点, , .曲线经过点,且曲线上任意点满足: 为定值.
(Ⅰ)求曲线的方程;
(Ⅱ)设过点的直线与曲线交于不同的两点,求面积最大时的直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点是棱长为2的正方体的棱的中点,点在面所在的平面内,若平面分别与平面和平面所成的锐二面角相等,则点到点的最短距离是( )
A. B. C. 1 D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为万元,并且每生产百台的生产成本为万元(总成本固定成本生产成本).销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出利润函数的解析式(利润销售收入总成本);
(2)工厂生产多少台产品时,可使盈利最多?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com