精英家教网 > 高中数学 > 题目详情

【题目】已知奇函数(实数为常数),且满足

(1)求函数的解析式;

(2)试判断函数在区间上的单调性,并用函数单调性定义证明;

(3)当时,函数恒成立,求实数的取值范围.

【答案】(1);(2)函数在区间上单调递减.证明见解析;(3)

【解析】

1)利用奇函数的定义,结合列方程组,解方程组求得的解析式.

2)函数在区间上单调递减,利用单调性的定义计算得,来证明结论成立.

(3)根据(2)的结论求得的最小值,结合函数恒成立列不等式,解不等式求得的取值范围.

1)由于函数为奇函数,故,由于,所以,解得,所以.

2)函数在区间上单调递减.任取,由于,所以,所以,所以函数在区间上单调递减.

(3)由(2)值在区间上单调递减,当时,取得最小值为,由于函数恒成立,所以,解得.所以实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得到个组成,周而复始,循环记录。2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的()

A. 己亥年 B. 戊戌年 C. 辛丑年 D. 庚子年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象过点P(1,2),且在处取得极值

(1)求的值;

(2)求函数的单调区间;

(3)求函数上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且a2=2b.

(1)求椭圆的方程;

(2)直线l:x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数时取得极值.

(1)的值;

(2)求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

知圆锥曲线参数和定点此圆锥曲线的左、右焦点,以原点,以的正半轴为极轴建立极坐标系.

1直线直角坐标方程;

2过点与直线直的直线此圆锥曲线于两点,求值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中,角的对边分别为,若,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】—只蚂蚁在三边长分别为的三角形内自由爬行,某时刻该蚂蚁距离三角形的任意一个顶点的距离不超过的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校举行了一次安全教育知识竞赛,竞赛的原始成绩采用百分制.已知高三学生的原始成绩均分布在发布成绩使用等级制各等级划分标准见表.

原始成绩

85分及以上

70分到84

60分到69

60分以下

等级

优秀

良好

及格

不及格

为了解该校高三年级学生安全教育学习情况,从中抽取了名学生的原始成绩作为样本进行统计按照的分组作出频率分布直方图如图所示其中等级为不及格的有5人,优秀的有3人.

1)求和频率分布直方图中的的值

2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高三学生中任选3人,求至少有1人成绩是及格以上等级的概率;

3)在选取的样本中,从原始成绩在80分以上的学生中随机抽取3名学生进行学习经验介绍,记表示抽取的3名学生中优秀等级的学生人数,求随机变量的分布列及数学期望.

查看答案和解析>>

同步练习册答案