精英家教网 > 高中数学 > 题目详情
设g(x)是函数f(x)=ln(x+1)+2x的导函数,若函数g(x)经过向量
a
平移后得到函数y=
1
x
则向量
a
=( )
(  )
A、(1,2)
B、(1,-2)
C、(-2,-1)
D、(2,1)
分析:求出函数f(x)=ln(x+1)+2x的导函数,根据图象平移的原则,左加,右减,上加、下减的原则可得平移向量.
解答:解:∵f(x)=ln(x+1)+2x
∴g(x)=f′(x)=
1
x+1
+2

而函数y=
1
x
=[
1
(x+1)-1
+2]-2

是由函数g(x)向右平移一个单位,再向下平移2个单位得到.
a
=(1,-2)

故选B.
点评:考查函数图象的变换的平移变换,体现了运动变化的观点分析解决问题;由左右、上下平移求平移向量,是易错点,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x>0时f(x)=x2-
1
3
x3

(1)求f(x)的解析式
(2)讨论函数f(x)在区间(-∞,0)上的单调性
(3)设g(x)是函数f(x)在区间(0,+∞)上的导函数.若a>1且g(x)在区间[
1
2
,a]
上的值域为[
1
a
,1]
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若k=
1
3
,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间[
1
2
,a]
上的值域为[
1
a
,1]
,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当
(1)求f(x)的解析式
(2)讨论函数f(x)在区间(-∞,0)上的单调性
(3)设g(x)是函数f(x)在区间(0,+∞)上的导函数.若a>1且g(x)在区间上的值域为,求a的值.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案