精英家教网 > 高中数学 > 题目详情
已知向量
m
=(
3
sin2x+2,cosx),
n
=(1,2cosx),设函数f(x)=
m
n

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,若f(A)=4,b=1,△ABC的面积为
3
2
,求实数a的值.
(Ⅰ)∵向量
m
=(
3
sin2x+2,cosx),
n
=(1,2cosx),
∴函数f(x)=
m
n
=
3
sin2x+2+2cos2x

=
3
sin2x+cos2x+3

=2sin(2x+
π
6
)+3

T=
2

(Ⅱ)由f(A)=4得,2sin(2A+
π
6
)+3=4
,∴sin(2A+
π
6
)=
1
2

又∵A为△ABC的内角,∴
π
6
<2A+
π
6
13π
6
,∴2A+
π
6
=
6
,解得A=
π
3

1
2
bcsinA=
3
2
,b=1,
1
2
×1×csin
π
3
=
3
2
,解得c=2.
由余弦定理可得a2=b2+c2-2bccosA=4+1-2×2×1×
1
2
=3.
a=
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知ω>0,向量
m
=(1,2cosωx),
n
=(
3
sin2ωx,-cosωx).设函数f(x)=
m
n
,且f(x)图象上相邻的两条对称轴的距离是
π
2

(Ⅰ)求数ω的值;
(Ⅱ)求函数f(x)在区间[
π
4
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知ω>0,向量
m
=(1,2cosωx),
n
=(
3
sin2ωx,-cosωx).设函数f(x)=
m
n
,且f(x)
图象上相邻的两条对称轴的距离是
π
2

(I)求ω的值及f(x)的单调递增区间;
(Ⅱ)若x∈[
π
4
π
2
],求函数f(x)
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知ω>0,向量
m
=(1,2cosωx),
n
=(
3
sin2ωx,-cosωx).设函数f(x)=
m
n
,且f(x)图象上相邻的两条对称轴的距离是
π
2

(Ⅰ)求数ω的值;
(Ⅱ)求函数f(x)在区间[
π
4
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知ω>0,向量
m
=(1,2cosωx),
n
=(
3
sin2ωx,-cosωx).设函数f(x)=
m
n
,且f(x)
图象上相邻的两条对称轴的距离是
π
2

(I)求ω的值及f(x)的单调递增区间;
(Ⅱ)若x∈[
π
4
π
2
],求函数f(x)
的最大值和最小值.

查看答案和解析>>

同步练习册答案