精英家教网 > 高中数学 > 题目详情
15.执行下面的程序框图,若p=0.95,则输出的n=(  )
A.4B.5C.6D.7

分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:根据流程图所示的顺序,
该程序的作用是判断S=$\frac{1}{2}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}}$>0.95时,n+1的值.
当n=2时,$\frac{1}{2}$+$\frac{1}{4}$=0.75<0.95,
当n=3时,$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$=0.875<0.95,
当n=4时,$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+$\frac{1}{16}$=0.9375<0.95,
当n=5时,$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+$\frac{1}{16}$+$\frac{1}{32}$=0.96875>0.95,
此时n+1=6.
则输出的n=6
故选:C

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2cos2$\frac{x}{2}-\sqrt{3}$sinx.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若α为第二象限角,且$f(α-\frac{π}{3})=\frac{1}{3}$,求$\frac{cos2α}{1+cos2α-sin2α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设各项为正数的数列{an}的前n和为Sn,且Sn满足:${S_n}^2-({n^2}+n-3){S_n}-3({n^2}+n)=0,n∈{N_+}$.等比数列{bn}满足:${log_2}{b_n}+\frac{1}{2}{a_n}=0$.
(Ⅰ)求数列{an},{bn}的通项公式;      
(Ⅱ)设cn=an•bn,求数列{cn}的前n项的和Tn
(Ⅲ) 证明:对一切正整数n,有$\frac{1}{{{a_1}({a_1}+1)}}+\frac{1}{{{a_2}({a_2}+1)}}+…+\frac{1}{{{a_n}({a_n}+1)}}<\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知A∪B∪C={a,b,c,d,e},A∩B={a,b,c},c∈A∩B∩C,则符合上述条件的{A,B,C}共有100组.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$\frac{1}{a}$<$\frac{1}{b}$<0,则下列结论不正确的是(  )
A.a2<b2B.ab<b2C.a+b<0D.|a|+|b|>|a+b|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)满足关系式f(x+2)=-2x+5,则f(5)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\sqrt{x+1}$-$\sqrt{x}$,则f(x)有最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x>0}\\{π,x=0}\\{0,x<0}\end{array}\right.$,则f{f[f(-2)]}=(  )
A.0B.πC.π2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是等腰三角形;
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求的值;
(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.

查看答案和解析>>

同步练习册答案