【题目】已知函数
.
(Ⅰ)若
是
的一个极值点,求函数
表达式, 并求出
的单调区间;
(Ⅱ)若
,证明当
时,
.
科目:高中数学 来源: 题型:
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族
中的成员仅以自驾或公交方式通勤.分析显示:当
中
(
)的成员自驾时,自驾群体的人均通勤时间为
(单位:分钟),而公交群体的人均通勤时间不受
影响,恒为
分钟,试根据上述分析结果回答下列问题:
(1)当
在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族
的人均通勤时间
的表达式;讨论
的单调性,并说明其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形,沿AB将△ADC翻折成
.设二面角
的平面角为
,直线
与直线BC所成角为
,直线
与平面ABC所成角为
,当
为锐角时,有
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为
的函数
是奇函数,
为指数函数且
的图象过点
.
(1)求实数n的值并写出
的表达式;
(2)若对任意的
,不等式
恒成立,求实数t的范围;
(3)若方程
恰有4个互异的实数根,求实数a的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下利用斜二测画法得到的结论,其中正确的是( )
A.相等的角在直观图中仍相等B.相等的线段在直观图中仍相等
C.平行四边形的直观图是平行四边形D.菱形的直观图是菱形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将所有平面向量组成的集合记作
,
是从
到
的映射, 记作
或
, 其中
都是实数. 定义映射
的模为: 在
的条件下
的最大值, 记做
. 若存在非零向量
, 及实数
使得
, 则称
为
的一个特征值.
(Ⅰ)若
, 求
;
(Ⅱ)如果
, 计算
的特征值, 并求相应的
;
(Ⅲ)试找出一个映射
, 满足以下两个条件: ①有唯一的特征值
, ②
. (不需证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com