精英家教网 > 高中数学 > 题目详情
12.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F恰好是圆F:x2+y2-4x+3=0的圆心,且点F到双曲线C的一条渐近线的距离为1,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.2$\sqrt{3}$

分析 x2+y2-4x+3=0可化为(x-2)2+y2=1,故F(2,0),即c=2,点F到一条渐近线的距离为b,即b=1,进而求出a,即可求出双曲线C的离心率.

解答 解:x2+y2-4x+3=0可化为(x-2)2+y2=1,故F(2,0),即c=2,
点F到一条渐近线的距离为b,即b=1,
∴$a=\sqrt{4-1}$=$\sqrt{3}$,
∴e=$\frac{c}{a}$=$\frac{2\sqrt{3}}{3}$.
故选:C.

点评 本题考查双曲线C的离心率,考查圆的方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.根据市场调查,某商品在最近的40天内的价格f(t)与时间t满足关系f(t)=$\left\{\begin{array}{l}{t+20,0≤t<20,t∈N}\\{-t+42,20≤t≤40,t∈N}\end{array}\right.$,销售量g(t)与时间t满足关系g(t)=-t+50(0≤t≤40,t∈N),设商品的日销售额为F(t)(销售量与价格之积).求:
(1)商品的日销售额F(t)的解析式;
(2)商品的日销售额F(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线l:x+y-6=0和曲线M:x2+y2-2x-2y-2=0,点A在直线上,若直线AC与曲线M至少有一个公共点C,且∠MAC=30°,则点A的横坐标的取值范围是.[1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知O是坐标原点,点A(-$\frac{1}{3}$,2),若点M(x,y)为平面区域$\left\{\begin{array}{l}{y≤2x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$上的一个动点,则|$\overrightarrow{OA}$+$\overrightarrow{OM}$|的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+m|-|5-x|(m∈R)
(1)当m=3时,求不等式f(x)>6的解集;
(2)若不等式f(x)≤10对任意实数x恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{log2an}为等差数列,且a1=$\frac{1}{4}$,a5=64,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在圆x2+y2=4上取一点P,过点P作x轴的垂线段PD,D为垂足.
(1)当点P在圆上运动时,线段PD的中点M的轨迹是什么?
(2)若直线y=x+$\frac{1}{2}$与(1)问中的点M的轨迹相交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.用秦九韶算法计算函数f(x)=2x4+3x3+5x-4,当x=2时,v2的值为(  )
A.10B.2C.12D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如表:
非统计专业统计专业
1310
720
为了检验主修统计专业是否与性别有关系,根据表中的数据,查对临界值
P(x2≥x00.100.050.0250.010
x02.7063.8415.0246.635
所以有95%的把握认为主修统计专业与性别有关系.

查看答案和解析>>

同步练习册答案