精英家教网 > 高中数学 > 题目详情

已知双曲线C1:2x2-y2=2m2(m>0),抛物线C2的顶点在原点,焦点F与C1的左焦点重合.

(1)求证C1与C2总有两个不同的交点;

(2)是否存在过抛物线C2的焦点F的弦AB,使△AOB的面积有最大值或最小值?若存在,求出直线AB的方程;若不存在,说明理由.

答案:
解析:

  (1)C1的方程为=1①,它的左焦点为F(-m,0),C2的方程为y2=-4mx②,把②代入①整理得x2+2mx-m2=0(m>0)③,因为Δ=16m2>0,故方程③有两个不等的实根x1,x2,因为x1x2=-m2<0,不妨设x1>0,x2<0,则=-4mx1<0不成立,=-4mx2>0,故C1和C2总有两个不同的交点.

  (2)若AB⊥x轴,易得S△AOBAB·OF=×4m=6m2,若AB不垂直于x轴,设AB的方程为y=tanθ(x+m)(0<θ<π,且θ≠=,代入C2得:y2+4mycotθ-12m2=0,因为|AB|=,而|AB|=,所以|y1-y2|=|AB|sinθ=·sinθ=,所以S△AOB|y1-y2|·|OF|=>6m2,故S△AOB有最小值6m2,此时AB⊥x轴,AB方程为x=m.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x0,y0)是渐近线为2x±3y=0且经过定点(6,2
3
)的双曲线C1上的一动点,点Q是P关于双曲线C1实轴A1A2的对称点,设直线PA1与QA2的交点为M(x,y),
(1)求双曲线C1的方程;
(2)求动点M的轨迹C2的方程;
(3)已知x轴上一定点N(1,0),过N点斜率不为0的直线L交C2于A、B两点,x轴上是否存在定点 K(x0,0)使得∠AKN=∠BKN?若存在,求出点K的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线an-1y2-anx2=an-1an的一个焦点为(0,
cn
)(n≥2)
,且c1=6,一条渐近线方程为y=
2
x
,其中{an}是以4为首项的正数数列,记Tn=a1c1+a2c2+…+ancn(n∈N*).
(1)求数列{cn}的通项公式;
(2)数列{cn}的前n项和为Sn,求
lim
n→∞
S
2
n
Tn

(3)若不等式
1
c1
+
2
c2
+…+
n
cn
+
n
3•2n
1
3
+loga(2x+1)(a>0,a≠1)
对一切自然数n(n∈N*)恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是______.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省部分重点中学联考高二(上)期末数学试卷(解析版) 题型:解答题

已知点P(x,y)是渐近线为2x±3y=0且经过定点(6,2)的双曲线C1上的一动点,点Q是P关于双曲线C1实轴A1A2的对称点,设直线PA1与QA2的交点为M(x,y),
(1)求双曲线C1的方程;
(2)求动点M的轨迹C2的方程;
(3)已知x轴上一定点N(1,0),过N点斜率不为0的直线L交C2于A、B两点,x轴上是否存在定点 K(x,0)使得∠AKN=∠BKN?若存在,求出点K的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案