精英家教网 > 高中数学 > 题目详情
6.已知椭圆C的中心O为坐标原点,右焦点为F(1,0),A、B分别是椭圆C的左右顶点,P是椭圆C上的动点.
(Ⅰ)若△PAB面积的最大值为$\sqrt{2}$,求椭圆C的方程;
(Ⅱ)过右焦点F做长轴AB的垂线,交椭圆C于M、N两点,若|MN|=3,求椭圆C的离心率.

分析 (Ⅰ)由题意设椭圆方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),由已知可得a2-b2=1,$\frac{1}{2}(2a)b=\sqrt{2}$,联立求得a,b的值,则椭圆方程可求;
(Ⅱ)由题意设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),利用椭圆的通径长结合a2-b2=1求得a,b的值,再由隐含条件求出c,则椭圆的离心率可求.

解答 解:(Ⅰ)由题意设椭圆方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),
则有a2-b2=1,$\frac{1}{2}(2a)b=\sqrt{2}$,
解得$a=\sqrt{2}$,b=1,
∴椭圆C的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(Ⅱ)由题意设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),
则有$\frac{2{b}^{2}}{a}=3$,又a2-b2=1,∴2a2-3a-2=0,
解得:a=2或a=-$\frac{1}{2}$(舍).
∴b2=a2-1=3,c2=a2-b2=4-3=1,则c=1.
∴椭圆C的离心率$e=\frac{c}{a}=\frac{1}{2}$.

点评 本题考查椭圆的简单性质,考查了椭圆方程的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x,x1,x2是任意实数,且x1≠x2,证明$\frac{1}{2}$[f(x1)+f(x2)]>f($\frac{{x}_{1}{+x}_{2}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\sqrt{3}sinxcosx-{cos^2}x$.
(1)求f(x)的最小正周期;
(2)若f(x)=-1,求$cos(\frac{2π}{3}-2x)$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,圆O的直径AB=8,圆周上过点C的切线与BA的延长线交于点E,过点B作AC的平行线交EC的延长线于点P.
(Ⅰ)求证:BE2=CE•PE
(Ⅱ)若EC=2$\sqrt{5}$,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a=i+i2+…+i2013(i是虚数单位),则$\frac{a(1+a)^{2}}{1-a}$的值为(  )
A.iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在四面体A-BCD中,E,F分别是AB,CD的中点,若AC,BD所成的角为60°,且BD=AC=1,求EF的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知x1、x2是函数f(x)=x2-mx+2lnx+4的两个极值点,a、b、c是函数f(x)的零点,x1、a、x2成等比数列.
(Ⅰ)求实数m的值;
(Ⅱ)求证:a>bc(参考数据:ln3=1.1);
(Ⅲ)关于x的不等式kx2-2(1-bc-k)lnx-k≥0恒成立,试用bc表示实数k.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆E:$\frac{x^2}{b^2}+\frac{y^2}{a^2}$=1(a>b>0),离心率为$\frac{{\sqrt{2}}}{2}$,且过点A(-1,0).
(Ⅰ)求椭圆E的方程.
(Ⅱ)若椭圆E的任意两条互相垂直的切线相交于点P,证明:点P在一个定圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x3+ax2+2在x=1时取得极值.
(1)求a;
(2)求f(x)在$[-\frac{1}{2},2]$上的最值.

查看答案和解析>>

同步练习册答案