精英家教网 > 高中数学 > 题目详情

在△ABC,abc分别为角ABC的对边,m=sin2,1,n=(-2,cos 2A+1),mn.

(1)求角A的度数;

(2)a=2,且△ABC的面积S=,求边c的值和△ABC的面积.

 

【答案】

(1) π (2)C=B

【解析】

:(1)由于mn,

所以m·n=-2sin2+cos 2A+1

=1-2cos2+2cos2A-1

=2cos2A-cosA-1

=(2cosA+1)(cosA-1)

=0.

所以cosA=-1(舍去),

即角A的度数为π.

(2)S=及余弦定理得

tanC=,

C==B.

又由正弦定理=c=2,

所以△ABC的面积S=acsinB=.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题P:底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥;命题Q:在△ABC中A>B是cos2
A
2
+
π
4
)<cos2
B
2
+
π
4
)成立的必要非充分条件,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中a、b、c分别内角A、B、C的对边,已知向量
m
=(c,b),
n
=(sin2B,sinC),且
m
n

(l)求角B的度数;
(2)若△ABC的面积为
3
3
4
,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北二模)在△ABC中a,b,c分别为角A,B,C所对的边的边长.
(1)试叙述正弦或余弦定理并证明之;
(2)设a+b+c=1,求证:a2+b2+c2
13

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中a、b、c分别是角A、B、C的对边,若△ABC的周长等于20,面积是10
3
,A=60°,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中a、b、c分别是角A、B、C的对边,b=2,a=1,cosC=
34

(1)求边c 的值;
(2)求sin(2A+C)的值.

查看答案和解析>>

同步练习册答案