精英家教网 > 高中数学 > 题目详情
已知点F是抛物线y2=4x的焦点,点P在该抛物线上,且点P的横坐标是2,则|PF|=(  )
A、2B、3C、4D、5
分析:确定抛物线y2=4x的准线方程,利用P到焦点F的距离等于P到准线的距离,即可求得结论.
解答:解:抛物线y2=4x的准线方程为:x=-1,
∵P到焦点F的距离等于P到准线的距离,P的横坐标是2,
∴|PF|=2+1=3.
故选:B.
点评:本题考查抛物线的性质,利用抛物线定义是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P是抛物线y2=16x上的一点,它到对称轴的距离为12,F是抛物线的焦点,则|PF|=
16
16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F是抛物线y2=6x的焦点,抛物线内有一定点A(2,3),P是抛物线上的一动点,要使△PAF的周长最小,则点P的坐标是
3
2
,3)
3
2
,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知点F是抛物线y2=6x的焦点,抛物线内有一定点A(2,3),P是抛物线上的一动点,要使△PAF的周长最小,则点P的坐标是________.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高三教学质量检测数学试卷3(理科)(解析版) 题型:解答题

已知点F是抛物线y2=6x的焦点,抛物线内有一定点A(2,3),P是抛物线上的一动点,要使△PAF的周长最小,则点P的坐标是   

查看答案和解析>>

同步练习册答案