精英家教网 > 高中数学 > 题目详情
甲、乙、丙三名学生各自随机选择到A、B两个书店购书,甲、乙两名学生在不同书店购书的概率
 
分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
解答:解:甲乙两名学生AB两个书店购书的所有可能结果有:
精英家教网
从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,
所以甲乙两名学生在不同书店购书的概率p=
1
2

答案:
1
2
点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某大学一个专业团队为某专业大学生研究了多款学习软件,其中有A、B、C三种软件投入使用,经一学年使用后,团队调查了这个专业大一四个班的使用情况,从各班抽取的样本人数如下表:
班级
人数 3 2 3 4
(1)从这12人中随机抽取2人,求这2人恰好来自同一班级的概率;
(2)从这12名学生中,指定甲、乙、丙三人为代表,已知他们下午自习时间每人选择一款软件,其中选A、B两个软件学习的概率都是
1
6
,且他们选择A、B、C任一款软件都是相互独立的.设这三名学生中下午自习时间选软件C的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:2014届广东省珠海市高三9月摸底考试理科数学试卷(解析版) 题型:解答题

某大学一个专业团队为某专业大学生研究了多款学习软件,其中有A、B、C三种软件投入使用,经一学年使用后,团队调查了这个专业大一四个班的使用情况,从各班抽取的样本人数如下表

班级

人数

3

2

3

4

(1)从这12人中随机抽取2人,求这2人恰好来自同一班级的概率.

(2)从这12名学生中,指定甲、乙、丙三人为代表,已知他们下午自习时间每人选择A、B两个软件学习的概率每个都是,且他们选择A、B、C任一款软件都是相互独立的.设这三名学生中下午自习时间选软件C的人数为,求的分布列和数学期望.

 

查看答案和解析>>

科目:高中数学 来源:2010年新疆乌鲁木齐高二上学期期中考试数学试卷 题型:解答题

现有7名同学去参加一个活动,分别求出以下不同要求的方法数(以下各小题写出必要的计算公式,最终结果用数字作答)

(1)排队时7名同学中的丙不站在中间的排法

(2) 排队时7名同学中的甲、乙、丙三名同学各不相邻的排法

(3)排队时7名同学中的甲不能站在最前并且已不能站在最后的排法(理科学生做)

(4)7名学生选出3名代表发言,甲,乙,丙三名同学至多两人个入选的选法(理科学生做)

     7名学生中选出3名代表发言,甲、乙只有一人入选的选法有多少?(文科学生做)

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某大学一个专业团队为某专业大学生研究了多款学习软件,其中有A、B、C三种软件投入使用,经一学年使用后,团队调查了这个专业大一四个班的使用情况,从各班抽取的样本人数如下表:
班级
人数 3 2 3 4
(1)从这12人中随机抽取2人,求这2人恰好来自同一班级的概率;
(2)从这12名学生中,指定甲、乙、丙三人为代表,已知他们下午自习时间每人选择一款软件,其中选A、B两个软件学习的概率都是
1
6
,且他们选择A、B、C任一款软件都是相互独立的.设这三名学生中下午自习时间选软件C的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省珠海市高三(上)开学摸底数学试卷(理科)(解析版) 题型:解答题

某大学一个专业团队为某专业大学生研究了多款学习软件,其中有A、B、C三种软件投入使用,经一学年使用后,团队调查了这个专业大一四个班的使用情况,从各班抽取的样本人数如下表:
班级
人数3234
(1)从这12人中随机抽取2人,求这2人恰好来自同一班级的概率;
(2)从这12名学生中,指定甲、乙、丙三人为代表,已知他们下午自习时间每人选择一款软件,其中选A、B两个软件学习的概率都是,且他们选择A、B、C任一款软件都是相互独立的.设这三名学生中下午自习时间选软件C的人数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案