分析 由增函数的定义知,得到此函数是一个增函数,由此关系得出a的取值范围即可.
解答 解:根据题意,由增函数的定义知,此函数是一个增函数;
故有$\left\{\begin{array}{l}{a<0}\\{a+3>0}\\{1≤a+3+4a}\end{array}\right.$,解得-$\frac{2}{5}$≤a<0,
则a的取值范围是[-$\frac{2}{5}$,0),
故答案为:[-$\frac{2}{5}$,0).
点评 本题考查函数的连续性,解题本题关键是根据题设中的条件得出函数是一个增函数,再有增函数的图象特征得出参数所满足的不等式,这是此类题转化常的方式,本题考查了推理论证的能力及转化的思想.
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,x<sinx且x>tanx | B. | ?x∈R,x≥sinx或x≤tanx | ||
| C. | ?x∈R,x<sinx或x>tanx | D. | ?x∈R,x≥sinx且x≤tanx |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x+1 | B. | f(x)=3x2-1 | C. | f(x)=2(x+1)3-1 | D. | f(x)═-$\frac{4}{x}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com