精英家教网 > 高中数学 > 题目详情

已知数列{an}是首项为1,公差为d的等差数列,数列{bn}是首项为1,公比为q(q>1)的等比数列.
(1)若a5=b5,q=3,求数列{an•bn}的前n项和;
(2)若存在正整数k(k≥2),使得ak=bk.试比较an与bn的大小,并说明理由.

解:(1)依题意,

所以an=1+20(n-1)=20n-19,
,①
,②
①-②得,==(29-20n)•3n-29,
所以
(2)因为ak=bk,所以1+(k-1)d=qk-1,即


所以
=
=
(ⅰ)当1<n<k时,由q>1知,

=<0;
(ⅱ)当n>k时,由q>1知,

=(q-1)2qk-2(n-k)>0,
综上所述,当1<n<k时,an>bn;当n>k时,an<bn;当n=1时,an=bn
分析:(1)由q=3,b1=1可求得b5,从而得到a5,由a1=1及通项公式可求得an,利用错位相减法即可求得数列{an•bn}的前n项和;
(2)由ak=bk,即1+(k-1)d=qk-1,得,作差bn-an变形,然后分1<n<k时,当n>k时,n=1三种情况讨论讨论差的符号即可作出大小比较;
点评:本题考查等差数列、等比数列的综合、数列求和,考查分类讨论思想,考查学生分析问题解决问题的能力,本题综合性强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是首项为3,公差为2的等差数列,其前n项和为Sn,数列{bn}为等比数列,且b1=1,bn>0,数列{ban}是公比为64的等比数列.
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求证:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=
1
4
的等比数列,其前n项和Sn中S3,S4,S2成等差数列,
(1)求数列{an}的通项公式;
(2)设bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求证:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1的等差数列,且公差不为零,而等比数列{bn}的前三项分别是a1,a2,a6
(I)求数列{an}的通项公式an
(II)若b1+b2+…bk=85,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项为1,公差为2的等差数列,又数列{bn}的前n项和Sn=nan
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)若cn=
1bn(2an+3)
,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=a,公差为2的等差数列,数列{bn}满足2bn=(n+1)an
(1)若a1、a3、a4成等比数列,求数列{an}的通项公式;
(2)若对任意n∈N*都有bn≥b5成立,求实数a的取值范围;
(3)数列{cn}满足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,当a=-20时,求f(n)的最小值(n∈N*).

查看答案和解析>>

同步练习册答案