精英家教网 > 高中数学 > 题目详情
对于x∈R,函数f(x)满足f(1-x)=f(1+x),f(x+2)=f(x),若当x∈(0,1]时,f(x)=x+1,则f(
15
2
)
等于(  )
分析:由f(x+2)=f(x),得到函数的周期是2,由f(1-x)=f(1+x),得到函数关于x=1对称,然后利用周期和对称将
15
2
转化到(0,1)内的数值进行求解.
解答:解:因为f(x+2)=f(x),所以函数的周期是2.又f(1-x)=f(1+x),所以函数关于x=1对称,
所以f(
15
2
)=f(2×6+
3
2
)=f(
3
2
)=f(1+
1
2
)=f(1-
1
2
)=f(
1
2
),
因为x∈(0,1]时,f(x)=x+1,所以f(
1
2
)=
1
2
+1=
3
2

故选B.
点评:本题考查了函数的周期性和对称性的应用,要求熟练掌握函数性质的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于x∈R,函数f(x)满足f(-x)=f(x),且f(x)在[0,+∞)上单调递减,f(2)=0,那么使得f(x)<0成立的x的范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四个命题:
①对于?x∈R,函数f(x)满足f(1+x)=f(1-x),则函数f(x)的最小正周期为2;
②所有指数函数的图象都经过点(0,1);
③若实数a,b满足a+b=1,则
1
a
+
4
b
的最小值为9;
④已知两个非零向量
a
b
,则“
a
b
”是“
a
b
=0
”的充要条件.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于x∈R,函数f(x)表示x-1与|x2-4x+3|中大的一个值.
(1)求f(0),f(1),f(2),f(3);
(2)作出y=f(x)的图象;
(3)在[0,2]内,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省攀枝花十五中高一(上)中考试数学(解析版) 题型:解答题

对于x∈R,函数f(x)表示x-1与|x2-4x+3|中大的一个值.
(1)求f(0),f(1),f(2),f(3);
(2)作出y=f(x)的图象;
(3)在[0,2]内,求f(x)的值域.

查看答案和解析>>

同步练习册答案