精英家教网 > 高中数学 > 题目详情
△ABC的角A,B,C的对边分别为a,b,c,已知asinA+bsinB-csinC=asinB.
(Ⅰ)求角C;
(Ⅱ)若a+b=5,S△ABC=
3
2
3
,求c的值.
分析:(Ⅰ)利用正弦定理化简已知等式得到一个关系式,再利用余弦定理表示出cosC,将得出的关系式代入求出cosC的值,即可确定出角C;
(Ⅱ)利用三角形面积公式表示出三角形ABC面积,将sinC与已知面积代入求出ab的值,再利用余弦定理列出关系式,利用完全平方公式变形,将a+b与ab,以及cosC的值代入即可求出c的值.
解答:解:(Ⅰ)根据正弦定理
a
sinA
=
b
sinB
=
c
sinC
,原等式可转化为:a2+b2-c2=ab,
∴cosC=
a2+b2-c2
2ab
=
ab
2ab
=
1
2

∵C为三角形的内角,
∴C=60°;
(Ⅱ)∵S△ABC=
1
2
absinC=
1
2
ab•
3
2
=
3
3
2

∴ab=6,
由余弦定理得:c2=a2+b2-2ab•cosC=(a+b)2-3ab=25-18=7,
∴c=
7
点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若△ABC的角A,B,C对边分别为a、b、c,且a=1,∠B=45°,S△ABC=2,则b=(  )
A、5
B、25
C、
41
D、5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的角A,B,C所对的边a,b,c,且acosC+
12
c=b

(1)求角A的大小;
(2)若a=1,求b+c的最大值并判断这时三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的角A、B、C,所对的边分别是a、b、c,且C=
π
3
,设向量
m
=(a,b),
n
(sinB,sinA),
p
=(b-2,a-2)

(1)若
m
n
,求B;
(2)若
m
p
,S△ABC=
3
,求边长c.

查看答案和解析>>

科目:高中数学 来源: 题型:

设锐角三角形ABC的角A,B,C所对的边分别为a,b,c,已知a2+b2-c2=ab.
(1)求∠C的度数;  (2)求∠A的取值范围; (3)求sinA+sinB的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的角A,B,C的对边分别为a,b,c,已知b=4,B=
π
3
,C=
π
4
,则c的长度是(  )
A、
6
B、2
3
+2
C、
4
6
3
D、2
3

查看答案和解析>>

同步练习册答案