精英家教网 > 高中数学 > 题目详情
已知△ABC的角A、B、C,所对的边分别是a、b、c,且C=
π
3
,设向量
m
=(a,b),
n
(sinB,sinA),
p
=(b-2,a-2)

(1)若
m
n
,求B;
(2)若
m
p
,S△ABC=
3
,求边长c.
分析:(1)由
m
n
,利用两个向量平行的性质可得asinA=bsinB,再由正弦定理可得 a2=b2,故a=b.再由C=
π
3
,可得△ABC为等边三角形,可得B的值.
(2)由
m
p
,可得
m
p
=0,化简可得 a+b=ab.由S△ABC=
3
,可得ab=4.再由余弦定理求得 c2的值,从而得到c的值.
解答:证明:(1)∵
m
n
m
=(a,b),
n
(sinB,sinA),
p
=(b-2,a-2)

∴asinA=bsinB,再由正弦定理可得 a2=b2,∴a=b.
又C=
π
3
,∴△ABC为等边三角形,故B=
π
3

(2)∵
m
p
,∴
m
p
=ab-2a+ab-2b=0,化简可得 a+b=ab ①.
由S△ABC=
3
,可得
1
2
ab•sinC
=
1
2
ab
×
3
2
=
3
,∴ab=4 ②.
再由余弦定理可得 c2=a2+b2-2ab•cosC=(a+b)2-3ab=16-12=4,故 c=2.
点评:本题主要考查两个向量平行和垂直的性质,正弦定理和余弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的角A、B、C所对的边分别是a、b、c,设向量
m
=(a,b)
n
=(sinB,sinA)
p
=(b-2,a-2)

(1)若
m
n
,求证:△ABC为等腰三角形;
(2)若
m
p
,边长c=2,角C=
π
3
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的角A,B,C所对的边分别是a,b,c,设向量
m
=(a,b),
n
=(sinB,sinA),
p
=(b-2,a-2).
(1)若
m
n
,试判断△ABC的形状并证明;
(2)若
m
p
,边长c=2,∠C=
π
3
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sin2x-1,cosx),n=(
1
2
,cosx),设函数f(x)=
m
n

(1)求函数f(x)的最小正周期及在[0,
π
2
]上的最大值;
(2)已知△ABC的角A、B、C所对的边分别为a、b、c,A、B为锐角,f(A+
π
6
)=
3
5
,f(
B
2
-
π
12
)=
10
10
,又a+b=
2
+1,求a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的角A,B,C所对的边a,b,c,且acosC+
12
c=b

(1)求角A的大小;
(2)若a=1,求b+c的最大值并判断这时三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的角A,B,C的对边依次为a,b,c,若满足
3
tanA•tanB-tanA-tanB=
3

(Ⅰ)求∠C大小;
(Ⅱ)若c=2,且△ABC为锐角三角形,求a2+b2取值范围.

查看答案和解析>>

同步练习册答案