精英家教网 > 高中数学 > 题目详情

某电厂冷却塔外形是如图所示的双曲线的一部分绕其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A′是双曲线的顶点,C,C′是冷却塔上口直径的两个端点,B,B′是冷却塔下底直径的两个端点,已知AA′=14 m,CC′=18 m,BB′=22 m,塔高20 m.

(1)建立坐标系并写出该曲线的方程;

(2)求冷却塔的容积(精确到10 m3,塔壁厚度不计,π取3.14)

 

【答案】

 

(1)

(2)冷却塔的容积为4.24×103(m3)

【解析】思路分析:设出双曲线的方程,利用待定系数法求方程;利用定积分求旋转体的体积.

解:(1)建立如图所示的直角坐标系xOy,

使AA′在x轴上,AA′的中点为坐标原点O,CC′与BB′平行于x轴.

设双曲线方程为=1(a>0,b>0),则a=AA′=7.

设B(11,y1),C(9,y2),因为点B,C在双曲线上,所以有

=1,①

=1,②

由题意,知y2-y1=20.③

由①②③得y1=-12,y2=8,b=.故所求的双曲线方程为

(2)由双曲线方程得x2=y2+49.设冷却塔的容积为V(m3),

则V=π=π(y3+49y)=4.25×103(m3).

答:冷却塔的容积为4.24×103(m3).

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2001•江西)某电厂冷却塔的外形是如图所示双曲线的一部分绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A、A′是双曲线的顶点,C、C′是冷却塔上口直径的两个端点,B、B′是下底直径的两个端点,已知AA′=14m,CC′=18m,BB′=22m,塔高20m.
(Ⅰ)建立坐标系并写出该双曲线方程;
(Ⅱ)求冷却塔的容积(精确到10m3,塔壁厚度不计,π取3.14).

查看答案和解析>>

科目:高中数学 来源: 题型:

某电厂冷却塔外形是如图1-7-8所示的双曲线的一部分绕其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A′是双曲线的顶点,C,C′是冷却塔上口直径的两个端点,B,B′是冷却塔下底直径的两个端点,已知AA′=14 m,CC′=18 m,BB′=22 m,塔高20 m.

图1-7-8

(1)建立坐标系并写出该曲线的方程;

(2)求冷却塔的容积(精确到10 m3,塔壁厚度不计,π取3.14).

查看答案和解析>>

科目:高中数学 来源: 题型:

某电厂冷却塔外形是如图1-7-8所示的双曲线的一部分绕其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A′是双曲线的顶点,C,C′是冷却塔上口直径的两个端点,B,B′是冷却塔下底直径的两个端点,已知AA′=14 m,CC′=18 m,BB′=22 m,塔高20 m.

图1-7-8

(1)建立坐标系并写出该曲线的方程;

(2)求冷却塔的容积(精确到10 m3,塔壁厚度不计,π取3.14).

查看答案和解析>>

科目:高中数学 来源: 题型:

某电厂冷却塔外形是如图所示的双曲线的一部分绕其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A′是双曲线的顶点,C,C′是冷却塔上口直径的两个端点,B,B′是冷却塔下底直径的两个端点,已知AA′=14 m,CC′=18 m,BB′=22 m,塔高20 m.

(1)建立坐标系并写出该曲线的方程;

(2)求冷却塔的容积(精确到10 m3,塔壁厚度不计,π取3.14).

查看答案和解析>>

同步练习册答案