精英家教网 > 高中数学 > 题目详情

椭圆数学公式上的一点P到左焦点的距离为1,则它到相对应的准线的距离为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    1
  4. D.
    数学公式
B
分析:先根据椭圆方程求得椭圆的半焦距c,进而可求得离心率,进而根据椭圆的第二定义求得点P到左准线的距离即可.
解答:根据椭圆的第二定义可知:P到左焦点的距离与其到左准线的距离之比为离心率,
依题意可知a=2,b=1,
∴c=
∴e==
∵点P到左焦点的距离为1,
∴P到椭圆左准线的距离为
故选B.
点评:本题主要考查了椭圆的简单性质,解题的关键是灵活利用椭圆的第二定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

利用焦半径公式|PF1|=a+ex0,|PF2|=a-ex0(a、e分别是椭圆长半轴长及离心率,x0为P点横坐标),在椭圆+=1上求一点M,使它到左焦点的距离是它到右焦点距离的两倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用焦半径公式|PF1|=a+ex0,|PF2|=a-ex0(a、e分别是椭圆长半轴长及离心率,x0P点横坐标),在椭圆上求一点M,使它到左焦点的距离是它到右焦点距离的两倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用焦半径公式|PF1|=a+ex0,|PF2|=a-ex0(a、e分别是椭圆长半轴长及离心率,x0为P点横坐标),在椭圆=1上求一点M,使它到左焦点的距离是它到右焦点距离的两倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用焦半径公式|PF1|=a+ex0,|PF2|=a-ex0(ae分别是椭圆长半轴长及离心率,x0P点横坐标),在椭圆上求一点M,使它到左焦点的距离是它到右焦点距离的两倍.

查看答案和解析>>

同步练习册答案