精英家教网 > 高中数学 > 题目详情

已知函数f(x)=|x+1|+|x+2|+…+|x+2011|+|x-1|+|x-2|+…+|x-2011|(x∈R),且f(a2-3a+2)=f(a-1),则满足条件的所有整数a的和是________.

6
分析:根据已知中函数f(x)=|x+1|+|x+2|+…+|x+2011|+|x-1|+|x-2|+…+|x-2011|结合函数奇偶性的定义,我们可以求出函数为一个偶函数,则f(a2-3a+2)=f(a-1),可以转化为|a2-3a+2|=|a-1|,又由绝对值的几何意义,我们可得f(0)=f(1)=f(-1),可知a=2也满足要求,进而得到答案.
解答:∵函数f(x)=|x+1|+|x+2|+…+|x+2011|+|x-1|+|x-2|+…+|x-2011|(x∈R),
∴f(-x)=|-x+1|+|-x+2|+…+|-x+2011|+|-x-1|+|-x-2|+…+|-x-2011|
=|x+1|+|x+2|+…+|x+2011|+|x-1|+|x-2|+…+|x-2011|=f(x)
即函数f(x)为偶函数
若f(a2-3a+2)=f(a-1),
则a2-3a+2=a-1,或a2-3a+2=-(a-1)
即a2-4a+3=0,或a2-2a+1=0
解得a=1,或a=3
又∵f(0)=f(1)=f(-1)
∴当a=2时,也满足要求
故满足条件的所有整数a的和是1+2+3=6
故答案为6
点评:本题考查的知识点是函数奇偶性的性质,及绝对值的几何意义,解答本题的技巧性较强,难度也比较大,其中分析出函数的奇偶性,从面将f(a2-3a+2)=f(a-1),转化为一个绝对值方程是解答本题的关键,但易忽略f(0)=f(1)=f(-1),而错解为4.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案