精英家教网 > 高中数学 > 题目详情

对400个某种型号的电子元件进行寿命追踪调查,其频率分布表如下表:

寿命(h)
频率
500600
0.10
600700
0.15
700800
0.40
800900
0.20
9001000
0.15
合计
1
 
(I)在下图中补齐频率分布直方图;
(II)估计元件寿命在500800h以内的概率。

解:(I)频率分布直方图:
 ………………8分
(II)估计元件寿命在500800h以内的概率为0.10+0.15+0.40="0.65" ………………12

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示.
(Ⅰ)求甲、乙两名运动员得分的中位数;
(Ⅱ)你认为哪位运动员的成绩更稳定?
(Ⅲ)如果从甲、乙两位运动员的7场得分中各随机抽取一场的得分,求甲的得分大于乙的得分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动).某校高一·一班50名学生在上学期参加活动的次数统计如条形图所示.

(Ⅰ)求该班学生参加活动的人均次数
(Ⅱ)从该班中任意选两名学生,求他们参加活动次数恰好相等的概率;
(Ⅲ)从该班中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.(要求:答案用最简分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(本题满分12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日期
 
1月10日
 
2月10日
 
3月10日
 
4月10日
 
5月10日
 
6月10日
 
昼夜温差
 
10
 
11
 
13
 
12
 
8
 
6
 
就诊人数(个)
 
22
 
25
 
29
 
26
 
16
 
12
 
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验。
(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;
若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性www.ks5u.com回归方程是否理想?
(参考数据:11×25+13×29+12×26+8×16=1092,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表:
甲厂

(1)  试分别估计两个分厂生产的零件的优质品率;
(2)  由于以上统计数据填下面列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”。

 
甲 厂
   乙 厂
 合计
优质品
 
 
 
 非优质品
 
 
 
  合计
 
 
 
附:

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若对于任意的实数,有,则的值为(   )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设函数则当时,表达式的展开式中常数项为(     )

A. B. C. D. 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)某种产品的广告费用支出X与销售额y(百万元)之间有如下对应数据:

  X
2
4
5
6
8
  Y
30
40
60
50
70
 ①画出散点图
②求回归直线方程
③试预测广告费用支出为10个百万元时,销售额多大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,
77,86,81,83,82,82,64,79,86,85,75,71,49,45,
(Ⅰ) 完成频率分布表;
(Ⅱ)作出频率分布直方图;
(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.

查看答案和解析>>

同步练习册答案