分析 (1)利用正弦定理直接求得a的值;
(2)由余弦定理分别求得cosA、cosB的值,由同角三角函数基本关系求得sinA,sinB,根据两角差的余弦公式求得cos(A-B).
解答 解:△ABC中,由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,3sinA=2sinB得:
3a=2b=6,∴a=2;
(2)由余弦定理可知:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{4+9-9}{2×2×3}$=$\frac{1}{3}$,
cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{9+9-4}{2×3×3}$=$\frac{4}{9}$,
△ABC中,内角A、B、C,sinA>0,sinB>0,
∴sinA=$\frac{\sqrt{65}}{9}$,sinB=$\frac{2\sqrt{2}}{3}$,
cos(A-B)=cosAcosB+sinAsinB=$\frac{4}{9}$×$\frac{1}{3}$+$\frac{\sqrt{65}}{9}$×$\frac{2\sqrt{2}}{3}$,
=$\frac{4+2\sqrt{130}}{27}$.
点评 本题考查正余弦定理的应用及两角差的余弦公式,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2+$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{4}$+y2=1或$\frac{{y}^{2}}{16}+\frac{{x}^{2}}{4}=1$ | ||
| C. | $\frac{{y}^{2}}{16}$+$\frac{{x}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2016-2017学年广东清远三中高一上学期月考一数学试卷(解析版) 题型:选择题
已知函数
在区间
上有最大值3,最小值2,则
的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源:2016-2017学年广东清远三中高二上学期月考一数学(文)试卷(解析版) 题型:解答题
等差数列
的前
项和为
,等比数列
的公比为
,满足
.
(1)求数列
,
通项
;
(2)求数列
的前
项和
.
查看答案和解析>>
科目:高中数学 来源:2016-2017学年广东清远三中高二上学期月考一数学(文)试卷(解析版) 题型:选择题
如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm),则此几何体的侧面积是( )
![]()
A.![]()
B.![]()
![]()
C.8
D.14![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com