已知:集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得
f(x0+1)=f(x0)+f(1)成立.
(1)函数f(x)=
是否属于集合M?说明理由;
(2)设函数f(x)=lg
,求实数a的取值范围;
(3)证明:函数f(x)=2x+x2∈M.
|
解:(Ⅰ)f(x)= 令 因此,不存在x (Ⅱ)f(x)=lg 若f(x)=lg 整理得存在x∈R使得(a2-2a)x2+2a2x+(2a2-2a)=0. (1)若a2-2a=0即a=2时,方程化为8x+4=0,解得x=- (2)若a2-2a≠0即a (Ⅲ)f(x)=2x+x2的定义域为R, 令2x+1+(x+1)2=(2x+x2)+(2+1),整理得2x+2x-2=0, 令g(x)=2x+2x-2,所以g(0)·g(1)=-2<0, 即存在x0∈(0,1)使得g(x)=2x+2x-2=0, 亦即存在x0∈R使得2x+1+(x+1)2=(2x+x2)+(2+1),故f(x)=2x+x2∈M. 10分 |
科目:高中数学 来源: 题型:
| 1 |
| x |
| a |
| x2+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| k | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2014届北京市高一上学期期中考试数学 题型:解答题
已知:集合M是满足下列性质的函数f(x)的全体:在定义域内存在x
,使得
f(x
+1)=f(x
)+f(1)成立。
(1)函数f(x)=
是否属于集合M?说明理由;
(2)设函数f(x)=lg
,求实数a的取值范围;
(3)证明:函数f(x)=2
+x![]()
M。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com