(本题14分)已知椭圆的中心在坐标原点,焦点在轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点与轴不垂直的直线交椭圆于,两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当直线的斜率为1时,求的面积;
(Ⅲ)在线段上是否存在点,使得以为邻边的平行四边形是菱形?
若存在,求出的取值范围;若不存在,请说明理由.
(Ⅰ) (Ⅱ) (Ⅲ)
(Ⅰ)由已知,椭圆方程可设为. ----------------1分
∵ 两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2,
∴ .
所求椭圆方程为. ---------------- 3分
(Ⅱ)右焦点,直线的方程为. ----------------4分
设,
由 得 ,解得 .-----------6分
∴ . ----------------8分
(Ⅲ)假设在线段上存在点,使得以为邻边的平行四边形是菱形.因为直线与轴不垂直,所以设直线的方程为. ----9分
由 可得.
∴. -------10分
.其中
以为邻边的平行四边形是菱形
----12分
∴. ----------------1 4分
科目:高中数学 来源:2010-2011学年福建省三明市高三上学期三校联考数学理卷 题型:解答题
(本题满分14分) 已知椭圆的左、右焦点分别为F1、F2,其中
F2也是抛物线的焦点,M是C1与C2在第一象限的交点,且
(I)求椭圆C1的方程; (II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年江西省六校高三联考数学理卷 题型:解答题
((本题满分14分)
已知椭圆的两个焦点,且椭圆短轴的两个端点与构成正三角形.
(1)求椭圆的方程;
(2)过点(1,0)且与坐标轴不平行的直线与椭圆交于不同两点P、Q,若在轴上存在定点E(,0),使恒为定值,求的值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省、华师附中、深圳中学、广雅中学高三上学期期末数学理卷 题型:解答题
((本题满分14分)
已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点 在直线上。
(1)求椭圆的标准方程
(2)求以OM为直径且被直线截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题14分)已知椭圆的两个焦点,且椭圆短轴的
两个端点与 构成正三角形.
(1)求椭圆的方程;
(2)过点(1,0)且与坐标轴不平行的直线与椭圆交于不同两点P、Q,
若在轴上存在定点E(,0),使恒为定值,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com