精英家教网 > 高中数学 > 题目详情

(本题14分)已知椭圆的中心在坐标原点,焦点在轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点轴不垂直的直线交椭圆于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)当直线的斜率为1时,求的面积;

(Ⅲ)在线段上是否存在点,使得以为邻边的平行四边形是菱形?

若存在,求出的取值范围;若不存在,请说明理由.

(Ⅰ)     (Ⅱ)   (Ⅲ)


解析:

(Ⅰ)由已知,椭圆方程可设为.    ----------------1分

∵ 两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2,

所求椭圆方程为.                             ---------------- 3分

(Ⅱ)右焦点,直线的方程为.             ----------------4分

     得  ,解得 .-----------6分

.  ----------------8分

(Ⅲ)假设在线段上存在点,使得以为邻边的平行四边形是菱形.因为直线与轴不垂直,所以设直线的方程为. ----9分

  可得.    

. -------10分

.其中

为邻边的平行四边形是菱形

     ----12分

. ----------------1 4分

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年福建省三明市高三上学期三校联考数学理卷 题型:解答题

(本题满分14分)     已知椭圆的左、右焦点分别为F1、F2,其中

F2也是抛物线的焦点,M是C1与C2在第一象限的交点,且  

(I)求椭圆C1的方程;   (II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省六校高三联考数学理卷 题型:解答题

((本题满分14分)

已知椭圆的两个焦点,且椭圆短轴的两个端点与构成正三角形.

(1)求椭圆的方程;

(2)过点(1,0)且与坐标轴不平行的直线与椭圆交于不同两点P、Q,若在轴上存在定点E(,0),使恒为定值,求的值.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省、华师附中、深圳中学、广雅中学高三上学期期末数学理卷 题型:解答题

((本题满分14分)

已知椭圆的中心为坐标原点O,椭圆短半轴长为1,动点  在直线上。

(1)求椭圆的标准方程

(2)求以OM为直径且被直线截得的弦长为2的圆的方程;

(3)设F是椭圆的右焦点,过点FOM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题14分)已知椭圆的两个焦点,且椭圆短轴的

两个端点与 构成正三角形.

(1)求椭圆的方程;

(2)过点(1,0)且与坐标轴不平行的直线与椭圆交于不同两点P、Q,

若在轴上存在定点E(,0),使恒为定值,求的值.

查看答案和解析>>

同步练习册答案