精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间数学公式上,f(x)>0恒成立,求a的取值范围.

(Ⅰ)解:当a=1时,f(x)=
f(2)=3;f′(x)=3x2-3x,f′(2)=6.
所以曲线y=f(x)在点(2,f(2))处的切线方程为y-3=6(x-2),
即y=6x-9;
(Ⅱ)解:f′(x)=3ax2-3x=3x(ax-1).
令f′(x)=0,解得x=0或x=
以下分两种情况讨论:
(1)若0<a≤2,则
当x变化时,f′(x),f(x)的变化情况如下表:

时,f(x)>0,等价于
解不等式组得-5<a<5.因此0<a≤2;
(2)若a>2,则
当x变化时,f′(x),f(x)的变化情况如下表:
时,f(x)>0等价于
解不等式组得.因此2<a<5.
综合(1)和(2),可知a的取值范围为0<a<5.
分析:(Ⅰ)把a=1代入到f(x)中得到切点的坐标,利用导数求出直线切线,即可求出切线方程;
(Ⅱ)求出f′(x)=0时x的值,分0<a≤2和a>2两种情况讨论函数的增减性分别得到f(-)和f()及f(-)和f()都大于0,联立求出a的解集的并集即可.
点评:本小题主要考查曲线的切线方程、利用导数研究函数的单调性与极值、解不等式等基础知识,考查运算能力及分类讨论的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案