精英家教网 > 高中数学 > 题目详情
(2008•普陀区一模)如图,在直三棱柱ABC-A1B1C1中,CC1=AC=BC,∠ACB=90°,P是AA1的中点,Q是AB的中点.
(1)求异面直线PQ与B1C所成角的大小;
(2)若直三棱柱ABC-A1B1C1的体积为
12
,求四棱锥C-BAPB1的体积.
分析:(1)以C为坐标原点,以CA,CB,CC1为X,Y,Z轴正方向建立空间直角坐标系,分别求出异面直线PQ与B1C的方向向量,代入向量夹角公式,即可求出异面直线PQ与B1C所成角的大小;
(2)连接CQ.由AC=BC,由已知中,Q是AB的中点,AA1⊥面ABC,我们根据等腰三角形“三线合一”的性质及线面垂直的性质,即可得到CQ⊥AB,CQ⊥AA1,进而根据线面垂直的判定定理,得到CQ⊥面ABB1A1,故CQ即为四棱锥C-BAPB1的高,求出棱锥的底面面积,代入棱锥体积公式,即可得到答案.
解答:解:(1)以C为坐标原点,以CA,CB,CC1为X,Y,Z轴正方向建立空间直角坐标系.不妨设CC1=AC=BC=2.
依题意,可得点的坐标P(2,0,1),Q(1,1,0),B1(0,2,2).
于是,
PQ
=(-1,1,-1)
B1C
=(0,-2,-2).
PQ
B1C
=0

则异面直线PQ与B1C所成角的大小为
π
2

(2)连接CQ.由AC=BC,Q是AB的中点,得CQ⊥AB;
由AA1⊥面ABC,CQ?面ABC,得CQ⊥AA1
又AA1∩AB=A,因此CQ⊥面ABB1A1
由直三棱柱ABC-A1B1C1的体积为
1
2
⇒CC1=AC=BC=1.可得CQ=
2
2

所以,四棱锥C-BAPB1的体积为VC-BAPB1=
1
3
•CQ•SBAPB1=
1
3
2
2
•[
1
2
(
1
2
+1)•
2
]=
1
4
点评:本题考查的知识点是异面直线及其所成的角,棱锥的体积,其中(1)的关键是建立空间坐标系,将异面直线夹角问题转化为向量夹角问题,而(2)的关键是根据线面垂直的判定定理,得到CQ为棱锥的高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•普陀区一模)一个圆柱形容器的轴截面尺寸如右图所示,容器内有一个实心的球,球的直径恰等于圆柱的高.现用水将该容器注满,然后取出该球(假设球的密度大于水且操作过程中水量损失不计),则球取出后,容器中水面的高度为
25
3
25
3
cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•普陀区一模)抛物线y2=-8x的焦点坐标为
(-2,0)
(-2,0)
;准线方程为
x=2
x=2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•普陀区一模)对任意的实数α、β,下列等式恒成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•普陀区一模)已知函数f(x)=
2x
3•2x+1
,则f-1(
1
4
)
=
0
0

查看答案和解析>>

同步练习册答案