精英家教网 > 高中数学 > 题目详情
(2008•普陀区一模)抛物线y2=-8x的焦点坐标为
(-2,0)
(-2,0)
;准线方程为
x=2
x=2
分析:根据抛物线方程求得p,进而根据抛物线的性质可求得其准线方程和焦点坐标.
解答:解:根据抛物线的性质可知抛物线y2=-8x,p=4,
则准线方程为x=
p
2
=2,
焦点坐标为(-2,0),
准线方程为:x=2
故答案为(-2,0);x=2
点评:本题主要考查了抛物线的简单性质.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•普陀区一模)一个圆柱形容器的轴截面尺寸如右图所示,容器内有一个实心的球,球的直径恰等于圆柱的高.现用水将该容器注满,然后取出该球(假设球的密度大于水且操作过程中水量损失不计),则球取出后,容器中水面的高度为
25
3
25
3
cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•普陀区一模)对任意的实数α、β,下列等式恒成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•普陀区一模)如图,在直三棱柱ABC-A1B1C1中,CC1=AC=BC,∠ACB=90°,P是AA1的中点,Q是AB的中点.
(1)求异面直线PQ与B1C所成角的大小;
(2)若直三棱柱ABC-A1B1C1的体积为
12
,求四棱锥C-BAPB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•普陀区一模)已知函数f(x)=
2x
3•2x+1
,则f-1(
1
4
)
=
0
0

查看答案和解析>>

同步练习册答案