(满分13分)设正项等比数列
的前
项和为
, 已知
,
.
(1)求首项
和公比
的值;(2)试证明数列
为等差数列.
(1)q="2." a1=1;(2)由(1)知an=2n-1,故bn=logman=(n-1)logm2,而bn+1-bn=logm2(常数)
所以数列
为等差数列.
【解析】
试题分析:(1)因为a3a4a5=a43=29,所以a4=8
所以q2=a4÷a2=4,
又q>0,所以q=2.且a1=1
(2)由(1)知an=2n-1,故bn=logman=(n-1)logm2
而bn+1-bn=logm2(常数)
所以数列
为等差数列.
考点:本题考查了等比数列的性质及等差数列的概念
点评:灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,对于等差(等比)数列证明问题,往往转化为定义形式化简即可求解
科目:高中数学 来源: 题型:
(本题满分13分)已知数列{an}的前n项和为Sn,且an=
(3n+Sn)对一切正整数n成立
(I)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;
(II)设
,求数列
的前n项和Bn;
查看答案和解析>>
科目:高中数学 来源:2012-2013学年湖南省怀化市高三上学期期末考试理科数学试卷(解析版) 题型:解答题
(本小题满分13分)
已知二次函数
同时满足:①不等式
的解集有且只有一个元素;②在定义域内存在
,使得不等式
成立.
设数列
的前
项和
,
(1)求数列
的通项公式;
(2)数列
中,令
,![]()
,求
;
(3)设各项均不为零的数列
中,所有满足
的正整数
的个数称为这个数列
的变号数。令
(
为正整数),求数列
的变号数.
查看答案和解析>>
科目:高中数学 来源:2011届重庆市南开中学高三最后一次模拟考试文数 题型:解答题
(本小题满分13分)设等差数列
的前
项和为
且
,
.
(I)求数列
的通项公式;
(II)求
时最小的正整数
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com