ÒÑÖªº¯Êýy=x+
a
x
£¨x£¾0£©ÓÐÈçÏÂÐÔÖÊ£ºÈç¹û³£Êýa£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ£¨0£¬
a
]ÉÏÊǼõº¯Êý£¬ÔÚ[
a
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®
£¨1£©Èç¹ûº¯Êýy=x+
b2
x
£¨x£¾0£©µÄÖµÓòΪ[6£¬+¡Þ£©£¬ÇóbµÄÖµ£»
£¨2£©Ñо¿º¯Êýy=x2+
c
x2
£¨x£¾0£¬³£Êýc£¾0£©ÔÚ¶¨ÒåÓòÄڵĵ¥µ÷ÐÔ£¬²¢Óö¨ÒåÖ¤Ã÷£¨ÈôÓжà¸öµ¥µ÷Çø¼ä£¬ÇëÑ¡ÔñÒ»¸öÖ¤Ã÷£©£»
£¨3£©¶Ôº¯Êýy=x+
a
x
ºÍy=x2+
a
x2
£¨x£¾0£¬³£Êýa£¾0£©×÷³öÍƹ㣬ʹËüÃǶ¼ÊÇÄãËùÍƹãµÄº¯ÊýµÄÌØÀý£®Ñо¿ÍƹãºóµÄº¯ÊýµÄµ¥µ÷ÐÔ£¨Ö»Ðëд³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©£¬²¢Çóº¯ÊýF£¨x£©=(x2+
1
x
)2
+(
1
x2
+x)2
ÔÚÇø¼ä[
1
2
£¬2]ÉϵÄ×î´óÖµºÍ×îСֵ£¨¿ÉÀûÓÃÄãµÄÑо¿½áÂÛ£©£®
·ÖÎö£º£¨1£©¸ù¾ÝÌâÒâ¿ÉÖª£ºº¯Êýy=x+
b2
x
£¨x£¾0£©ÔÚ£¨0£¬
b2
]ÉÏÊǼõº¯Êý£¬ÔÚ[
b2
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®´Ó¶øµ±x=
b2
ʱ£¬º¯ÊýÈ¡µ½×îСֵ6£¬¹Ê¿É½â£»
£¨2£©¸ù¾ÝÌâÒâ¿ÉÖª£ºº¯Êýy=x2+
c
x2
£¨x£¾0£¬³£Êýc£¾0£©ÔÚ£¨0£¬
4c
]ÉÏÊǼõº¯Êý£¬ÔÚ[
4c
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬ÔÙÓö¨Òå½øÐÐÖ¤Ã÷£»
£¨3£©¸ù¾ÝÌâÒ⣬½áºÏ»ù±¾²»µÈʽ¿É×÷Íƹ㣮ÀûÓÃÍƹã½áÂÛ£¬¿ÉÖªº¯ÊýÔÚ[
1
2
£¬1]
ÉÏÊǼõº¯Êý£¬ÔÚ[1£¬2]ÉÏÊÇÔöº¯Êý£¬´Ó¶ø¿É½â£®
½â´ð£º½â£º£¨1£©º¯Êýy=x+
b2
x
£¨x£¾0£©ÔÚ£¨0£¬
b2
]ÉÏÊǼõº¯Êý£¬ÔÚ[
b2
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®µ±x=
b2
ʱ£¬ymin=
b2
+
b2
b2
=2
b2
=6
£¬
ËùÒÔb=¡À3£®£¨Â©-3£¬¿Û1·Ö£©¡­£¨4·Ö£©
£¨2£©º¯Êýy=x2+
c
x2
£¨x£¾0£¬³£Êýc£¾0£©ÔÚ£¨0£¬
4c
]ÉÏÊǼõº¯Êý£¬ÔÚ[
4c
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®¡­£¨2·Ö£©
Ö¤Ã÷£ºº¯Êýy=x2+
c
x2
£¨x£¾0£¬³£Êýc£¾0£©ÔÚ£¨0£¬
4c
]ÉÏÊǼõº¯Êý
ÔÚ£¨0£¬
4c
]ÄÚÈÎÈ¡Á½¸ö±äÁ¿x1£¬x2£¬ÇÒx1£¼x2£¬
Ôòy1-y2=
x
2
1
 +
c
x
2
1
-
x
2
2
-
c
x
2
2
=
(
x
2
1
-
x
2
2
)(
x
2
1
x
2
2
-c)
x
2
1
x
2
2

¡ßx1£¬x2¡Ê£¨0£¬
4c
]ÇÒx1£¼x2£¬
¡ày1£¾y2
¡àº¯Êýy=x2+
c
x2
£¨x£¾0£¬³£Êýc£¾0£©ÔÚ£¨0£¬
4c
]ÉÏÊǼõº¯Êý¡­£¨4·Ö£©
£¨3£©×÷³öÍƹ㣺y=xn+
a
xn
£¨x£¾0£¬n¡ÊN*£¬³£Êýa£¾0£©¡­£¨1·Ö£©
ÔÚ£¨0£¬
2na
]ÉÏÊǼõº¯Êý£¬ÔÚ[
2na
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®¡­£¨2·Ö£©
»ò×÷³öÍƹ㣺y=x2n+
a
x2n
£¨x£¾0£¬n¡ÊN£¬³£Êýa£¾0£©¡­£¨1·Ö£©
ÔÚ£¨0£¬
(2•2n)a
]ÉÏÊǼõº¯Êý£¬ÔÚ[
(2•2n)a
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®¡­£¨2·Ö£©
F£¨x£©=(x2+
1
x
)2
+(
1
x2
+x)2

=(x4+
1
x4
)+(x2+
1
x2
)+2(x+
1
x
)

[
1
2
£¬1]
ÉÏÊǼõº¯Êý£¬ÔÚ[1£¬2]ÉÏÊÇÔöº¯Êý£®¡­£¨2·Ö£©
µ±x=1ʱ£¬F£¨x£©min=8£»
µ±x=
1
2
»ò2ʱ£¬F(x)max=
405
16
£®¡­£¨3·Ö£©
µãÆÀ£º±¾ÌâµÄ¿¼µãÊǺ¯ÊýÓë·½³ÌµÄ×ÛºÏÔËÓã¬Ö÷Òª¿¼²éÓë»ù±¾²»µÈʽ½áºÏ£¬Ñо¿º¯ÊýµÄµ¥µ÷ÐÔ£¬²¢×öÍƹ㣬´Ó¶øÑо¿º¯ÊýµÄ×îÖµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=x+
a
x
ÓÐÈçÏÂÐÔÖÊ£ºÈç¹û³£Êýa£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ£¨0£¬
a
]ÉÏÊǼõº¯Êý£¬ÔÚ[
a
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®
£¨¢ñ£©Èç¹ûº¯Êýy=x+
2b
x
£¨x£¾0£©µÄÖµÓòΪ[6£¬+¡Þ£©£¬ÇóbµÄÖµ£»
£¨¢ò£©Ñо¿º¯Êýy=x2+
c
x2
£¨³£Êýc£¾0£©ÔÚ¶¨ÒåÓòÄڵĵ¥µ÷ÐÔ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ó£©¶Ôº¯Êýy=x+
a
x
ºÍy=x2+
a
x2
£¨³£Êýa£¾0£©×÷³öÍƹ㣬ʹËüÃǶ¼ÊÇÄãËùÍƹãµÄº¯ÊýµÄÌØÀý£®Ñо¿ÍƹãºóµÄº¯ÊýµÄµ¥µ÷ÐÔ£¨Ö»Ðëд³ö½áÂÛ£¬²»±ØÖ¤Ã÷£©£¬²¢Çóº¯ÊýF£¨x£©=£¨x2+
1
x
£©n+£¨
1
x2
+x
£©n£¨nÊÇÕýÕûÊý£©ÔÚÇø¼ä[
1
2
£¬2]ÉϵÄ×î´óÖµºÍ×îСֵ£¨¿ÉÀûÓÃÄãµÄÑо¿½áÂÛ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=x+
a
x
µ©£¨a£¾0£©ÓÐÈçϵÄÐÔÖÊ£ºÔÚÇø¼ä£¨0£¬
a
]Éϵ¥µ÷µÝ¼õ£¬ÔÚ[
a
£¬+¡Þ£©Éϵ¥µ÷µÝÔö£®
£¨1£©Èç¹ûº¯Êýf£¨x£©=x+
2b
x
ÔÚ£¨0£¬4]Éϵ¥µ÷µÝ¼õ£¬ÔÚ[4£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬Çó³£ÊýbµÄÖµ£®
£¨2£©Éè³£Êýa¡Ê[l£¬4]£¬Çóº¯Êýy=x+
a
x
ÔÚx¡Ê[l£¬2]µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=x+
a
x
ÓÐÈçÏÂÐÔÖÊ£ºÈç¹û³£Êýa£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ£¨0£¬
a
ÉÏÊǼõº¯Êý£¬ÔÚ
a
£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£®
£¨1£©Èç¹ûº¯Êýy=x+
2b
x
ÔÚ£¨0£¬4£©ÉÏÊǼõº¯Êý£¬ÔÚ£¨4£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬Çóʵ³£ÊýbµÄÖµ£»
£¨2£©Éè³£Êýc¡Ê1£¬4£¬Çóº¯Êýf£¨x£©=x+
c
x
£¨1¡Üx¡Ü2£©µÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=x+
a
x
ÓÐÈçÏÂÐÔÖÊ£ºÈç¹û³£Êýa£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ(0£¬
a
]
ÉÏÊǼõº¯Êý£¬ÔÚ[
a
£¬+¡Þ)
ÉÏÊÇÔöº¯Êý£¬
£¨1£©Èç¹ûº¯Êýy=x+
3m
x
(x£¾0)
µÄÖµÓòÊÇ[6£¬+¡Þ£©£¬ÇóʵÊýmµÄÖµ£»
£¨2£©Ñо¿º¯Êýf(x)=x2+
a
x2
£¨³£Êýa£¾0£©ÔÚ¶¨ÒåÓòÄڵĵ¥µ÷ÐÔ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Èô°Ñº¯Êýf(x)=x2+
a
x2
£¨³£Êýa£¾0£©ÔÚ[1£¬2]ÉϵÄ×îСֵ¼ÇΪg£¨a£©£¬Çóg£¨a£©µÄ±í´ïʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸