精英家教网 > 高中数学 > 题目详情
12.已知等差数列{an}的前n项和Sn满足 S3=0,S5=-5,
(1)求数列{an}的通项an
(2)令${b_n}=\frac{1}{{{a_{2n-1}}•{a_{2n+1}}}}(n∈{N^*})$,求数列{bn}的前n 项和Tn

分析 (1)方法一:等差数列的前n项和公式可知:$\left\{\begin{array}{l}{3{a}_{1}+\frac{3×2}{2}=0}\\{5{a}_{1}+\frac{5×4}{2}=-5}\end{array}\right.$,即可求得a1和d,根据等差数列的通项公式即可求得数列{an}的通项an
方法二:根据等差数列前n项和的性质可知:S3=3a2=0,S5=5a3=-5,则d=a3-a2=-1,则an=a2+(n-2)d;
(2)由(1)可知bn=$\frac{1}{2}$($\frac{1}{2n-3}$-$\frac{1}{2n-1}$),采用“裂项法”即可求得Tn

解答 解:(1)方法一:设等差数列{an}公差为d,
由等差数列的前n项和公式可知:$\left\{\begin{array}{l}{3{a}_{1}+\frac{3×2}{2}=0}\\{5{a}_{1}+\frac{5×4}{2}=-5}\end{array}\right.$,
即$\left\{\begin{array}{l}{{a}_{1}+d=0}\\{{a}_{1}+2d=-1}\end{array}\right.$,解得a1=1,d=-1,
则{an}的通项公式an=1-(n-1)=2-n;
方法二:由等差数列前n项和的性质可知:S3=3a2=0,则a2=0,
S5=5a3=-5,则a3=-1,
d=a3-a2=-1,
∴数列{an}的通项公式an=a2+(n-2)d=2-n;
(2)由(1)可知:bn=$\frac{1}{{a}_{2n-1}•{a}_{2n+1}}$=$\frac{1}{(3-2n)(1-2n)}$=$\frac{1}{(2n-1)(2n-3)}$=$\frac{1}{2}$($\frac{1}{2n-3}$-$\frac{1}{2n-1}$),
数列{bn}的前n 项和Tn=$\frac{1}{2}$(-1-1)+$\frac{1}{2}$(1-$\frac{1}{3}$)+$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)+…+$\frac{1}{2}$($\frac{1}{2n-3}$-$\frac{1}{2n-1}$),.
=$\frac{1}{2}$(-1-1+1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-3}$-$\frac{1}{2n-1}$),
=$\frac{1}{2}$(-1-$\frac{1}{2n-1}$),
=$\frac{n}{1-2n}$,
数列{bn}的前n 项和Tn=$\frac{n}{1-2n}$.

点评 本题考查等差数列的性质及前n项和公式,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设{an}是首项大于零的等比数列,则“a12<a22”是“数列{an}为递增数列”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下列函数中,单调增区间是(-∞,0]的是④.
①y=-$\frac{1}{x}$ ②y=-(x-1)③y=x2-2 ④y=-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=|x|的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax2+ln(x+1),当a=-$\frac{1}{4}$时,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某地区2011年至2015年农村居民家庭人均纯收入y(单位:万元)的数据如表:
年份20112012201320142015
年份代号t12345
人均纯收入y2.93.33.64.44.8
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2011年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2016年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\left\{{\begin{array}{l}{\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x}•\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}}\\{\hat a=\overline y-\hat b\overline x}\end{array}}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在棱长为1的正方体ABCD-A1B1C1D1中,异面直线AD1与DC1所成角的大小为(  )
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=|x-a|,a<0
(Ⅰ)若a=-2求不等式f(x)+f(2x)>2的解集
(Ⅱ)若不等式f(x)+f(2x)<$\frac{1}{2}$的解集非空,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(文科)设A在平面BCD内的射影是直角三角形BCD的斜边BD的中点O,
AC=BC=1,CD=$\sqrt{2}$,
求(1)AC与平面BCD所成角的大小;
(2)异面直线AB和CD的大小.

查看答案和解析>>

同步练习册答案