精英家教网 > 高中数学 > 题目详情
定义在上的函数满足:对任意恒成立.有下列结论:①;②函数上的奇函数;③函数是定义域内的增函数;④若,且,则数列为等比数列.
其中你认为正确的所有结论的序号是                    
①②④

试题分析:因为已知中,函数满足对任意恒成立
那么可知f(0)-f(0)=f(0),故有f(0)=0,故命题1正确。
命题2中,令0=x,y=x则f(0)-f(x)=f(-x),f(-x)+f(x)=0,可知为奇函数。
故正确。
命题3中,令x=1,y=.那么可知得到f()=0,显然不符合单调函数定义,错误。
命题4总,由于,且,则数列为等比数列,故成立。正确的序号为①②④
点评:解决该试题的关键是利用抽象函数的表达式,进行合理的赋值,然后结合函数的奇偶性的性质很单调性的性质来求解分析得到结论。体现了抽象函数的赋值思想的运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数有三个极值点。
(I)证明:
(II)若存在实数c,使函数在区间上单调递减,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数
(1)判断该函数在区间(2,+∞)上的单调性,并给出证明;
(2)求该函数在区间[3,6]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
设函数的导函数为,且
(Ⅰ)求函数的图象在x=0处的切线方程;
(Ⅱ)求函数的极值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)确定上的单调性;
(Ⅱ)设上有极值,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知函数处有极值.
(Ⅰ)求实数值;
(Ⅱ)求函数的单调区间;
(Ⅲ)试问是否存在实数,使得不等式对任意 及
恒成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在实数集上是增函数,则
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义在上的函数满足,则不等式的解集为_               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若定义运算*b)=则函数)的值域是(   )
A.(0,1 ]B.[1,+∞)C.(0.+∞)D.(-∞,+∞)

查看答案和解析>>

同步练习册答案