精英家教网 > 高中数学 > 题目详情
定义在(-1,1)上的函数f(x)满足:①对任意x,y∈(-1,1)都有f(x)+f(y)=f(
x+y
1+xy
)
;②当x∈(-1,0)时,f(x)>0.
(Ⅰ)判断f(x)在(-1,1)上的奇偶性,并说明理由;
(Ⅱ)判断函数f(x)在(0,1)上的单调性,并说明理由;
(Ⅲ)若
f(
1
5
) =-
1
2
f(
1
5
) =-
1
2
,试求f(
1
2
)-f(
1
11
)-f(
1
19
)
的值.
分析:(1)判断函数f(x)的奇偶性:①判断函数定义域是否关于原点对称,②判断f(-x)与f(x)的关系.
(2)证明函数f(x)的单调性,利用定义,分五步①设元,②作差,③变形,④判号,⑤下结论.
(3)利用题中所给的等式,把要求的已知的相结合,逐步求出要求的值.
解答:解:(Ⅰ)令x=y=0⇒f(0)=0.
令y=-x,则f(x)+f(-x)=0⇒f(-x)=-f(x)⇒f(x)在(-1,1)上是奇函数.
(Ⅱ)设0<x1<x2<1,则f(x1)-f(x2)=f(x1)+f(-x2)=f(
x1-x2
1-x1x2
)

而x1-x2<0,0<x1x2<1⇒
x1-x2
1-x1x2
<0

f(
x1-x2
1-x1x2
)
>0.即 当x1<x2时,f(x1)>f(x2).
∴f(x)在(0,1 )上单调递减.
(Ⅲ)由于f(
1
2
)-f(
1
5
)=f(
1
2
)+f(-
1
5
)=f(
1
2
-
1
5
1-
1
2×5
)=f(
1
3
)

f(
1
3
)-f(
1
11
)=f(
1
4
)
f(
1
4
)-f(
1
19
)=f(
1
5
)

f(
1
2
) -f(
1
11
) -f(
1
19
) =2f(
1
5
) =-1
点评:本题考查了抽象函数的奇偶性,单调性,与具体函数的证明方法相同,做题一定要抓牢定义,特别是证明题,一切方法源根本,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,且f(
1
2
)=
2
5

①求函数f(x)的解析式;
②判断函数f(x)在(-1,1)上的单调性并用定义证明;
③解关于x的不等式f(log2x-1)+f(log2x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在(-1,1)上的奇函数,当x∈(0,1)时,f(x)=2x2-2x,求f(x)在(-1,1)上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m、n∈[-1,1],m+n≠0,>0.

(1)证明f(x)在[-1,1]上是增函数;

(2)解不等式f(x+)<f().

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛市即墨一中高一(上)期中数学试卷(解析版) 题型:解答题

函数f(x)=是定义在(-1,1)的奇函数,且f()=
(1)确定f(x)的解析式;
(2)判断函数在(-1,1)上的单调性;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年黑龙江省哈尔滨三中高一(上)段考数学试卷(解析版) 题型:解答题

函数f(x)=是定义在(-1,1)的奇函数,且f()=
(1)确定f(x)的解析式;
(2)判断函数在(-1,1)上的单调性;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

同步练习册答案