分析 由韦达定理得x1+x2=3,x1x2=$\frac{3}{2}$,
(1)由(x1-3)(x2-3)=x1x2-3(x1+x2)+9,能求出结果.
(2)由$\frac{1}{{x}_{1}^{2}}$+$\frac{1}{{x}_{2}^{2}}$=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{{x}_{1}}^{2}{{x}_{2}}^{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{{x}_{1}{x}_{2}}^{\;}}{{{x}_{1}}^{2}{{x}_{2}}^{2}}$,能求出结果.
(3)由x${\;}_{1}^{3}$+x${\;}_{2}^{3}$=(x1+x2)(${{x}_{1}}^{2}+{{x}_{2}}^{2}-{x}_{1}{x}_{2}$),能求出结果.
解答 解:∵x1,x2是方程2x2-6x+3=0的两个根,
∴x1+x2=3,x1x2=$\frac{3}{2}$,
(1)(x1-3)(x2-3)=x1x2-3(x1+x2)+9=$\frac{3}{2}-9+9$=$\frac{3}{2}$.
(2)$\frac{1}{{x}_{1}^{2}}$+$\frac{1}{{x}_{2}^{2}}$=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{{x}_{1}}^{2}{{x}_{2}}^{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{{x}_{1}{x}_{2}}^{\;}}{{{x}_{1}}^{2}{{x}_{2}}^{2}}$
=$\frac{9-3}{\frac{9}{4}}$=$\frac{8}{3}$.
(3)x${\;}_{1}^{3}$+x${\;}_{2}^{3}$=(x1+x2)(${{x}_{1}}^{2}+{{x}_{2}}^{2}-{x}_{1}{x}_{2}$)]
=3[(x1+x2)2-3x1x2)
=3(9-$\frac{9}{2}$)
=$\frac{27}{2}$.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意韦达定理的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | (0,1] | C. | (1,2] | D. | (-∞,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | 3 | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com