精英家教网 > 高中数学 > 题目详情
如图,椭圆的离心率为,直线所围成的矩形ABCD的面积为8.

(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线与椭圆M有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时m的值.
(I)     (II) 和0时,取得最大值
(I)……①
矩形ABCD面积为8,即……②
由①②解得:,∴椭圆M的标准方程是.
(II)
,则
.
.
点时,,当点时,.
①当时,有

其中,由此知当,即时,取得最大值.
②由对称性,可知若,则当时,取得最大值.
③当时,
由此知,当时,取得最大值.
综上可知,当和0时,取得最大值
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的焦点和上顶点分别为,我们称为椭圆的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆,判断是否相似,如果相似则求出的相似比,若不相似请说明理由;
(2)若与椭圆相似且半短轴长为的椭圆为,且直线与椭圆为相交于两点(异于端点),试问:当面积最大时,是否与有关?并证明你的结论.
(3)根据与椭圆相似且半短轴长为的椭圆的方程,提出你认为有价值的相似椭圆之间的三种性质(不需证明);

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆上的一点,若到椭圆右准线的距离是,则点到右焦点的距离     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,椭圆的长轴为短轴,且与有相同的离心率。
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆上,,求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆C1的离心率为5/13,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为
A.(x/4)2-(y/3)2=1B.(x/13)2-(y/5)2=1
C.(x/3)2-(y/4)2=1D.(x/13)2-(y/12)2=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,长轴长为,直线交椭圆于不同的两点A、B.
(1)求椭圆的方程;
(2)求的值(O点为坐标原点);
(3)若坐标原点O到直线的距离为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,椭圆的中心为坐标原点,左焦点为为椭圆的上顶点,且.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线与椭圆交于两点,直线)与椭圆交于两点,且,如图所示.
(ⅰ)证明:;
(ⅱ)求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若关于的方程表示焦点在x轴上的椭圆,则的取值范围为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知P是椭圆上的一点,是该椭圆的两个焦点,若的内切圆的半径为,则( )
A.B.C.D.

查看答案和解析>>

同步练习册答案