精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=lnx-$\frac{1}{2}$ax2+(1-a)x,其中a∈R,f(x)的导函数是f′(x).
(Ⅰ)求函数f(x)的极值;
(Ⅱ)在曲线y=f(x)的图象上是否存在不同的两点A(x1,y1),B(x2,y2)(x1≠x2),使得直线AB的斜率k=f′($\frac{{x}_{1}+{x}_{2}}{2}$)?若存在,求出x1与x2的关系;若不存在,请说明理由.

分析 (Ⅰ)求导数$f′(x)=\frac{-a{x}^{2}+(1-a)x+1}{x}$,讨论a的符号,这样便可判断导数的符号,从而可判断每种情况是否存在极值,若存在便可求出该极值;
(Ⅱ)先根据条件求出斜率$k=\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}-\frac{a}{2}({x}_{1}+{x}_{2})+1-a$,而可得到$f′(\frac{{x}_{1}+{x}_{2}}{2})=\frac{2}{{x}_{1}+{x}_{2}}-\frac{a}{2}({x}_{1}+{x}_{2})+1-a$,这样便可根据条件得出$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}=\frac{2}{{x}_{1}+{x}_{2}}$,然后换元$t=\frac{{x}_{1}}{{x}_{2}}$,并设x1>x2,t>1,从而得出$g(t)=lnt-\frac{2(t-1)}{t+1}=lnt+\frac{4}{t+1}-2(t>1)$;求导数并可判断导数符号g′(t)>0,从而g(t)>g(1),而g(1)=0,这即说明g(t)=0无解,从而得出满足条件的两点A,B不存在.

解答 解:(Ⅰ)由已知得,f′(x)=$\frac{1}{x}-ax+(1-a)=\frac{-a{x}^{2}+(1-a)x+1}{x}(x>0)$
(1)当a≤0时,∵x>0,∴f′(x)>0;
∴f(x)在(0,+∞)上是增函数,此时函数f(x)无极值;
(2)当a>0时,$f′(x)=\frac{-a{x}^{2}+(1-a)x+1}{x}=\frac{-a(x-\frac{1}{a})(x+1)}{x}$;
∴当x$∈(0,\frac{1}{a})$时,g′(x)>0;当x$∈(\frac{1}{a},+∞)$时,g′(x)<0;
∴函数f(x)在$(0,\frac{1}{a})$上是增函数,在$(\frac{1}{a},+∞)$上是减函数;
∴当$x=\frac{1}{a}$时,f(x)有极大值$f(\frac{1}{a})=\frac{1}{2a}-lna-1$,无极小值;
综上所述,当a≤0时,函数f(x)无极值,当a>0时,f(x)有极大值$\frac{1}{2a}-lna-1$,无极小值.
(Ⅱ)由题意得,
$k=\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{[ln{x}_{1}-\frac{a}{2}{{x}_{1}}^{2}+(1-a){x}_{1}]-[ln{x}_{1}-\frac{a}{2}{{x}_{2}}^{2}+(1-a){x}_{2}]}{{x}_{1}-{x}_{2}}$
=$\frac{ln\frac{{x}_{1}}{{x}_{2}}-\frac{a}{2}({{x}_{1}}^{2}-{{x}_{2}}^{2})+(1-a)({x}_{1}-{x}_{2})}{{x}_{1}-{x}_{2}}$=$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}-\frac{a}{2}({x}_{1}+{x}_{2})+(1-a)$.
$f′(\frac{{x}_{1}+{x}_{2}}{2})=\frac{2}{{x}_{1}+{x}_{2}}-\frac{a}{2}({x}_{1}+{x}_{2})+(1-a)$.
由$k=f′(\frac{{x}_{1}+{x}_{2}}{2})$得,$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{x}_{1}-{x}_{2}}=\frac{2}{{x}_{1}+{x}_{2}}$;
即$ln\frac{{x}_{1}}{{x}_{2}}=\frac{2({x}_{1}-{x}_{2})}{{x}_{1}+{x}_{2}}$,即$ln\frac{{x}_{1}}{{x}_{2}}-\frac{2(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+1}=0$;
令$t=\frac{{x}_{1}}{{x}_{2}}$,不妨设x1>x2,则t>1,记$g(t)=lnt-\frac{2(t-1)}{t+1}=lnt+\frac{4}{t+1}-2(t>1)$;
$g′(t)=\frac{1}{t}-\frac{4}{(t+1)^{2}}=\frac{(t-1)^{2}}{t(t+1)}>0$,所以g(t)在(1,+∞)上是增函数;
所以g(t)>g(1)=0,所以方程g(t)=0无解,则满足条件的两点A,B不存在.

点评 考查基本初等函数导数的求法,根据导数符号判断函数单调性,以及求函数极值的方法,根据两点坐标求直线的斜率的计算公式,通分及公因式提取的运用,以及换元法的运用,根据函数单调性求值域的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),根据收集到的数据可知x1+x2+x3+x4+x5=150,由最小二乘法求得回归直线方程为$\widehat{y}$=0.67x+24.9,则y1+y2+y3+y4+y5=(  )
A.45B.125.4C.225D.350.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线l:3x+4y+4=0与圆C:(x-2)2+y2=9交于A,B两点,则cos∠ACB=(  )
A.-$\frac{1}{9}$B.$\frac{1}{9}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z=$\frac{i}{1-i}$(其中i为虚数单位),则z•$\overline z$=(  )
A.1B.$\frac{{\sqrt{3}}}{2}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线y=$\frac{1}{2}$x-b与曲线y=-$\frac{1}{2}$x+lnx相切,则实数b的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在($\frac{x}{2}$-$\frac{1}{\root{3}{x}}$)n的展开式中,只有第7项的二项式系数最大,则展开式常数项是(  )
A.$\frac{55}{2}$B.-$\frac{55}{2}$C.-28D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足$\frac{2{a}_{n}}{{a}_{n}+2}$=an+1(n∈N*),且a1=$\frac{1}{1006}$.
(I)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列,并求通项an
(2)若bn=$\frac{2-2010{a}_{n}}{{a}_{n}}$,cn=bn•($\frac{1}{2}$)n,(n∈N*),且Tn=c1+c2+…+cn,求证:1≤Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知变量x与y线性相关,且由观测数据求得样本平均数分别为$\overline{x}$=2,$\overline{y}$=3,则由该观测数据求得的线性回归方程不可能是(  )
A.y=3x-3B.y=2x+1C.y=x+1D.y=0.5x+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知质点以速度v(t)=$\left\{\begin{array}{l}{3{t}^{2}-3,t∈(0,2]}\\{13-2t,t∈(2,5]}\end{array}\right.$(m/s)在运动,则该质点从时刻t=0到时刻t=5(s)时所经过的路程为(  )
A.20mB.22mC.24mD.26m

查看答案和解析>>

同步练习册答案