| A. | 0 | B. | -3 | C. | 3 | D. | 6 |
分析 由已知推导出f(x)+f(-x)=6,由f(lg2)+f(lg$\frac{1}{2}$)=f(lg2)+f(-lg2),能求出结果.
解答 解:∵f(x)=ln($\sqrt{1+4{x}^{2}}$-2x)+3,
∴f(x)+f(-x)=ln($\sqrt{1+4{x}^{2}}$-2x)+3+ln($\sqrt{1+4{x}^{2}}$+2x)+3
=ln[($\sqrt{1+4{x}^{2}}-2x$)•($\sqrt{1+4{x}^{2}}+2x$)+6,
=ln1+6=6,
∴f(lg2)+f(lg$\frac{1}{2}$)=f(lg2)+f(-lg2)=6.
故选:D.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质和对数运算法则的合理运用.
科目:高中数学 来源: 题型:解答题
| 商店名称 | A | B | C | D | E |
| 销售额( x)/千万元 | 3 | 5 | 6 | 7 | 9 |
| 利润额( y)/千万元 | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2] | B. | (-∞,-2)∪(2,+∞) | C. | (2,+∞) | D. | (-2,2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com