精英家教网 > 高中数学 > 题目详情
10.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:
商店名称ABCDE
销售额( x)/千万元35679
利润额( y)/千万元23345
(1)求利润额y与销售额x之间的线性回归方程$\hat y=\hat bx+\hat a$;
(2)若该公司某月的总销售额为40千万元,则它的利润额估计是多少?
参考公式:用最小二乘法求线性回归方程系数公式$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

分析 (1)根据表格数据求出$\widehat{a}$,$\widehat{b}$的值,即可求利润额y与销售额x之间的线性回归方程$\hat y=\hat bx+\hat a$;
(2)根据回归方程,当x=40时,代入即可得到结论.

解答 解:(1)由题意得$\overline x=6,\overline y=3.4$…(2分)
$\sum_{i=1}^5{{x_i}{y_i}}=112$,$\sum_{i=1}^5{{x_i}^2}=200$…(4分)
$\hat b$=$\frac{112-5×6×3.4}{200-5×6×6}$=0.5…(6分)
$\hat a=3.4-0.5×6=0.4$…(7分)
则,线性回归方程为$\hat y=0.5x+0.4$…(8分)
(2)将x=40代入线性回归方程中得到y=0.5×40+0.4=20.4(千万元)…(11分)
答:它的利润额估计是20.4千万元.…(12分)

点评 本题主要考查线性回归方程的求解和应用,考查学生的计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知焦点在y轴上的双曲线C的一条渐近线与直线$l:x+\sqrt{3}y=0$垂直,且C的一个焦点到l的距离为3,则C的标准方程为(  )
A.$\frac{y^2}{9}-\frac{x^2}{3}=1$B.$\frac{x^2}{9}-\frac{y^2}{3}=1$C.$\frac{y^2}{4}-\frac{x^2}{6}=1$D.$\frac{x^2}{4}-\frac{y^2}{6}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知命题p:?x>0,总有(x+1)ex>1,则¬p为(  )
A.?x0≤0,使得(x0+1)e${\;}^{{x}_{0}}$≤1B.?x0>0,使得(x0+1)e${\;}^{{x}_{0}}$≤1
C.?x0>0,使得(x0+1)e${\;}^{{x}_{0}}$≤1D.?x0≤0,使得(x0+1)e${\;}^{{x}_{0}}$≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,a=$\sqrt{3}$,b=2,c=1,那么角A的值是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若关于x的二次不等式x2+mx+1≥0的解集为实数集R,则实数m的取值范围是(  )
A.m≤-2或m≥2B.-2≤m≤2C.m<-2或m>2D.-2<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,点P(3,4)为圆x2+y2=25的一点,点E,F为y轴上的两点,△PEF是以点P为顶点的等腰三角形,直线PE,PF交圆于D,C两点,直线CD交y轴于点A,则cos∠DAO的值为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(理)已知a2+c2-ac-3=0,则c+2a的最大值是(  )
A.2$\sqrt{3}$B.2$\sqrt{6}$C.2$\sqrt{7}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ln($\sqrt{1+4{x}^{2}}$-2x)+3,则f(lg2)+f(lg$\frac{1}{2}$)=(  )
A.0B.-3C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=ax2+(b-3)x+3,x∈[a2-2,a]是偶函数,则a+b=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案