精英家教网 > 高中数学 > 题目详情

(1)f(x)=x + 的值域为[3,9],K[3,9]时,f(x)=K有两不等的根x1,x2,求x1+x2.

(2)g (x) =x+2+的值域为[7,11],K[7,11]时,g(x)=K

也有两不等根x3、x4,求x3+x4

(3)h(x) =x+-b   ,  x>a

h(x)=K的两根之和为K+18,且h(x)的最小值为0,试求a与b的值。

(1)x1+x2=K  (2)x3+x4=k-1  (3)  a=7     b=11


解析:

(1)∵x+≥3      K=x+

         ∴x>0     x2-kx+2=0

△      =k2-8≥1

         ∴ x1+ x2=K

         即x1+x2=K

    (2)∵K=x+2+ 

         ∴ (x-1)2-(K-3)(x-1) =0

△      = (K-3)2≥8

∴(x3-1)+(x4-1)=K-3

         ∴ x3+ x4=K-1

 即x3+x4=k-1

  

(3)设h(x)=k的两根为x5,x6,则x5+x6=k+18

∵h(x)=(x-a)++(a-b)

     ≥a-b+4                     ①

     由k(x-a)+ +(a-b)得

      k-(a-b) = (x5-a)+(x6-a)

                =k+18-2a

      ∴a+b-18=0                      ②

    联立①②得  a=7

   

                b=11

即:a、b的值为7和11。

考察考生联想、类比、递推的能力,函数与方程的综合应用能力。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各对函数表示同一函数的是(  )
(1)f(x)=x与g(x)=(
x
2                     
(2)f(x)=x-2与g(x)=
x2-4x+4

(3)f(x)=πx2(x≥0)与g(r)=πr2(r≥0)
(4)f(x)=|x|与g(x)=
x,x≥0
-x,x<0

查看答案和解析>>

科目:高中数学 来源: 题型:

若在曲线f(x,y)=0(或y=f(x))上两个不同点处的切线重合,则称这条切线为曲线线f(x,y)=0(或y=f(x))的自公切线,下列方程的曲线:①x2-y2=1;②y=3sinx+4cosx;③y=x2-|x|;④|x|+1=
4-y2
,存在自公切线的是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)的定义域为R,若存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为F函数.现给出下列函数:
①f(x)=2x;
②f(x)=x2+1;
f(x)=
2
(sinx+cosx)

f(x)=
x
x2-x+1

⑤f(x)是定义在实数集R上的奇函数,且对一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是F函数的函数有
①④⑤
①④⑤

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案