精英家教网 > 高中数学 > 题目详情
16.设x0是方程log2x+x=0的根,则x0属于区间(  )
A.(0,$\frac{1}{8}$)B.($\frac{1}{8}$,$\frac{1}{4}$)C.($\frac{1}{4}$,$\frac{1}{2}$)D.($\frac{1}{2}$,1)

分析 令f(x)=log2x+x,可知函数f(x)在(0,+∞)上单调递增,由f($\frac{1}{2}$)f(1)<0,根据函数零点存在定理即可得到答案.

解答 解:令f(x)=log2x+x,可知函数f(x)在(0,+∞)上单调递增,
∵f($\frac{1}{2}$)=log2$\frac{1}{2}$+$\frac{1}{2}$=-$\frac{1}{2}$<0,f(1)=log21+1=1>0,
∴f($\frac{1}{2}$)f(1)<0,
∴函数f(x)的零点x0∈($\frac{1}{2}$,1),
故选:D.

点评 本题考查了函数的单调性和函数零点存在定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.下列四个判断:
①某校高三一班和高三二班的人数分别是m,n,某次测试数学平均分分别是a,b,则这两个班的数学的平均分为$\frac{a+b}{2}$;
②10名工人某天生产同一种零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有c>a>b;
③设从总体中抽取的样本为(x1,y1),(x2,y2),…,(xn,yn),若记$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\underset{\stackrel{n}{\;}}{i=1}$yi,则回归直线方程$\stackrel{∧}{y}$=bx+a必过点($\overline{x}$,$\overrightarrow{y}$); 
④在简单随机抽样中,某一个个体被抽到的可能性与第几次抽样无关,每一次被抽到的可能性相等.
其中正确判断的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x≤1}\\{1-lo{g}_{2}x,x>1}\end{array}\right.$,则不等式f(x)≤2的解集为(  )
A.(0,1]∪(2,+∞)B.[0,+∞)C.[0,1]D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.${2^{1+{{log}_2}5}}$的值等于(  )
A.$2+\sqrt{5}$B.10C.$2+\frac{{\sqrt{2}}}{2}$D.$1+\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法不正确的是(  )
A.a∥b,a?α,b⊆α⇒a∥αB.α∥β,b∥β,a,b⊆α⇒α∥β
C.a⊥b,a⊥c,b∩c=p,p∈α,a?α⇒a⊥αD.α⊥β,α∩β=l,b⊆α,b⊥l⇒b⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=2-3\sqrt{x}$ x∈[1,2)
(1)判断函数f(x)的单调性,并用单调性定义加以证明;
(2)求函数$f(x)=2-3\sqrt{x}$在x∈[1,2)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.f(x)=ax3+3x2+2,若f′(-1)=3,则函数在x=-1处的切线方程为(  )
A.y=3x+5B.y=3x-5C.y=-3x+5D.y=-3x-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知全集U=R,集合A={x|2<x<4},B={x|-2≤x≤3},则A∩(∁RB)等于(  )
A.(1,2)B.(3,4)C.(1,3)D.(1,2)∪(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点A(1,0)和B(1,2)是圆x2+y2-2x-2y+1=0上的两点,若在直线y=kx-1上存在点P,使得$\overrightarrow{PA}$$•\overrightarrow{PB}$=0,则k的取值范围是(  )
A.k≥1B.k≥$\frac{3}{4}$C.k≤1D.k≤$\frac{3}{4}$

查看答案和解析>>

同步练习册答案