精英家教网 > 高中数学 > 题目详情

已知椭圆

(1)过椭圆左焦点做直线与椭圆相交于AB两点,若AB的长恰好等于椭圆短轴的长,求该直线方程;

(2)求倾斜角为45°的直线与椭圆相交的弦的中点的轨迹方程.

答案:略
解析:

(1)设所求直线的斜率为k,则方程为:y=k(x1),由得:(其中),所以

,将代入得:

所以直线方程为∵

(2)设直线方程为y=xb,由

得:,由得:

,所以弦的中点坐标为

所以轨迹方程为(椭圆内部)

或设直线与椭圆相交的两个交点坐标为,中点坐标为(xy),则有

相减得:

.轨迹方程为(椭圆内部)


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:=1(a>b>0),直线l1:=1被椭圆C截得的弦长为2,过椭圆C的右焦点且斜率为3的直线l2被椭圆C截得的弦长是椭圆长轴长的,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练24练习卷(解析版) 题型:解答题

如图所示,已知圆Cy轴相切于点T(0,2),x轴正半轴相交于两点M,N(M在点N的右侧),|MN|=3,已知椭圆D:+=1(a>b>0)的焦距等于2|ON|,且过点,.

(1)求圆C和椭圆D的方程;

(2)若过点M斜率不为零的直线l与椭圆D交于AB两点,求证:直线NA与直线NB的倾斜角互补.

 

查看答案和解析>>

科目:高中数学 来源:2014届辽宁省高二12月月考文科数学试卷(解析版) 题型:解答题

已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。

(1)求椭圆C的方程;

(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省海珠区高三第一次综合测试数学理卷 题型:解答题

(本小题满分14分)

已知椭圆C:=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为3.

(1)求椭圆C的方程;

(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案