精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x+2017,x>0}\\{-f(x+2),x≤0}\end{array}\right.$,则f(-2016)=-2018.

分析 根据函数的表达式,得到当x≤0时,函数是周期为4的周期函数,利用函数的周期性进行转化求解即可.

解答 解:当x≤0时,f(x)=-f(x+2),
即f(x)=-f(x+2)=-[-f(x+4)]=f(x+4),即此时函数是周期为4的周期函数,
则f(-2016)=f(-2016+4×504)=f(0)=-f(0+2)=-f(2)=-(log22+2017)=-(1+2017)=-2018,
故答案为:-2018

点评 本题主要考查函数值的计算,根据分段函数的表达式,判断当x≤0时具备周期性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知f(α)=$\frac{cos(π-α)sin(\frac{3}{2}π+α)}{cosα}$.
(1)若α为第二象限角且f(α)=-$\frac{3}{5}$,求$\frac{sin2α+cos2α+1}{1+tanα}$的值;
(2)若5f(α)=4f(3α+2β).试问tan(2α+β)•tan(α+β)是否为定值(其中α≠kπ+$\frac{π}{2}$,α+β≠kπ+$\frac{π}{2}$,2α+β≠kπ+$\frac{π}{2}$,3α+2β≠kπ+$\frac{π}{2}$,k∈Z)?若是,请求出定值;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=$\left\{\begin{array}{l}{(1-2m)x-3m,x<1}\\{lo{g}_{m}x,x≥1}\end{array}$,其中m∈[$\frac{1}{5}$,$\frac{1}{2}$),若a=f(-$\frac{3}{2}$),b=f(1),c=f(2),则(  )
A.a<c<bB.a<b<cC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,点M,N分别为线段PB,PC上的点,MN⊥PB.
(Ⅰ)求证:BC⊥平面PAB;
(Ⅱ)当PA=AB=2,二面角C-AN-D大小为为$\frac{π}{3}$时,求PN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数y=f(x)的定义域D中恰好存在n个值x1,x2,…,xn满足f(-xi)=f(xi)(i=1,2,…,n),则称函数y=f(x)为定义域D上的“n度局部偶函数”.已知函数g(x)=$\left\{\begin{array}{l}{sin(\frac{π}{2}x)-1,x<0}\\{lo{g}_{a}x(a>0,a≠1),x>0}\end{array}\right.$是定义域(-∞,0)∪(0,+∞)上的“3度局部偶函数”,则a的取值范围是($\frac{1}{4}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则此几何体的体积是(  )
A.$\frac{10}{3}$B.4C.$\frac{20}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.一个几何体的三视图如图所示,则此几何体的体积是80;表面积是80+8$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≥4}\\{f(x+2),x<4}\end{array}\right.$,则f(2+log23)的值为(  )
A.6B.24C.36D.48

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.观察下列图,并阅读图形下面的文字,依此推断n条直线的交点个数最多是$\frac{1}{2}$n(n-1).

查看答案和解析>>

同步练习册答案