精英家教网 > 高中数学 > 题目详情
某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数如下表:
 
1号
2号
3号
4号
5号
甲组
4
5
x
9
10
乙组
5
6
7
y
9
(1)已知两组技工在单位时间内加工的合格零件平均数为7,分别求出甲、乙两组技工在单位时间内加工的合格零件的方差,并由此分析两组技工的加工水平;
(2)质检部门从该车间甲、乙两组中各随机抽取一名技工,对其加工的零件进行检测,若2人加工的合格零件个数之和超过14,则称该车间“质量合格”,求该车间“质量合格”的概率.
(1)两组技工水平基本相当,乙组更稳定些(2)
(1)由甲组技工在单位时间内加工的合格零件平均数 (4+5+x+9+10)=7,得x=7.
由乙组技工在单位时间内加工的合格零件平均数
(5+6+7+y+9)=7,得y=8.
甲组方差[(4-7)2+(5-7)2+(7-7)2+(9-7)2+(10-7)2]=5.2.
乙组方差[(5-7)2+(6-7)2+(7-7)2+(8-7)2+(9-7)2]=2.
 >
∴两组技工水平基本相当,乙组更稳定些.
(2)从甲、乙两组中各随机抽取一名技工,加工的合格零件个数包含的基本事件为(4,5),(4,6),(4,7),(4,8),(4,9),(5,5),(5,6),(5,7),(5,8),(5,9),(7,5),(7,6),(7,7),(7,8),(7,9),(9,5),(9,6),(9,7),(9,8),(9,9),(10,5),(10,6),(10,7),(10,8),(10,9),共25个.
而车间“质量合格”包含的基本事件为(7,8),(7,9),(9,6),(9,7),(9,8),(9,9),(10,5),(10,6),(10,7),(10,8),(10,9),共11个,
因此,所求概率P,即该车间“质量合格”的概率为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某种水果的单个质量在500g以上视为特等品.随机抽取1000个该水果,结果有50个特等品.将这50个水果的质量数据分组,得到下边的频率分布表.

(1)估计该水果的质量不少于560g的概率;
(2)若在某批水果的检测中,发现有15个特等品,据此估计该批水果中没有达到特等品的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某班共有学生40人,将以此数学考试成绩(单位:分)绘制成频率分布直方图,如图所示.

(1)请根据图中所给的数据,求a的值;
(2)从成绩在[50,70)内的学生中随机选3名学生,求这3名学生的成绩都在[60,70)内的概率;
(3)为了了解学生这次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X表示所选学生成绩在[60,70)内的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

研究性学习小组为了解某生活小区居民用水量(吨)与气温(℃)之间的关系,随机统计并制作了5天该小区居民用水量与当天气温的对应表:
日期
9月5日
10月3日
10月8日
11月16日
12月21日
气温(℃)
18
15
11
9
-3
用水量(吨)
57
46
36
37
24
(1)若从这随机统计的5天中任取2天,求这2天中有且只有1天用水量低于40吨的概率(列出所有的基本事件);
(2)由表中数据求得线性回归方程中的,试求出的值,并预测当地气温为5℃时,该生活小区的用水量.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了估计某校的某次数学考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在上,将这些成绩分成六段,…,后得到如图所示部分频率分布直方图.

(1)求抽出的60名学生中分数在内的人数;(5分)
(2)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校优秀人数.(5分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24人. 根据以上数据建立一个的列联表如下:
 
不及格
及格
总计
甲班
a
b
 
乙班
c
d
 
总计
 
 
 
参考公式:
P(K2>k)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
  k
0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
根据以上信息,在答题卡上填写以上表格,通过计算对照参考数据,有_____的把握认为“成绩与班级有关系” .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
API
0~50
51~
100
101~
150
151~
200
201~
250
251~
300
>300
级 别


1
2
1
2

状 况


轻微
污染
轻度
污染
中度
污染
中度
重污染
重度
污染
 





对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图.

(1)求直方图中x的值.
(2)计算一年中空气质量分别为良和轻微污染的天数.
(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.
(结果用分数表示.
已知57=78125,27=128,++++=,365=73×5).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某中学为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下图的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

公安部最新修订的《机动车驾驶证申领和使用的规定》于2013年1月1日起正式实施,新规实施后,获取驾照要经过三个科目的考试,先考科目一(理论一),科目一过关后才能再考科目二(桩考和路考),科目二过关后还要考科目三(理论二),只有三个科目都过关后才能拿到驾驶证,某驾校现有100名新学员,第一批参加的20人各科目通过的人数情况如下表:
参考人数
通过科目一人数
通过科目二人数
通过科目三人数
20
12
4
2
请你根据表中的数据
(1)估计该驾校这100名新学员有多少人一次性(不补考)获取驾驶证;
(2)第一批参加考试的20人中某一学员已经通过科目的一考试,求他能通过科目二却不能通过科目三的概率;
(3)该驾校为调动教官的工作积极性,规定若所教学员每通过一个科目的考试,则学校奖励教官100元,现从这20人中随机抽取1人,记为学校因为该学员而奖励教官的金额数,求的数学期望。

查看答案和解析>>

同步练习册答案