精英家教网 > 高中数学 > 题目详情
已知a,b,c为三角形的三边长,且满足a2+b2+c2+338=10a+24b+26c,试确定这个三角形的形状.
考点:余弦定理,正弦定理
专题:解三角形
分析:现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.
解答: 解:由a2+b2+c2+338=10a+24b+26c,
得:(a2-10a+25)+(b2-24b+144)+(c2-26c+169)=0,
即:(a-5)2+(b-12)2+(c-13)2=0,
由非负数的性质可得:
a-5=0
b-12=0
c-13=0

解得:
a=5
b=12
c=13

∵52+122=169=132,即a2+b2=c2
∴∠C=90°,
则三角形ABC为直角三角形.
点评:此题考查了勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题甲:(
1
2
x,21-x,2 x2成等比数列,命题乙:lgx,lg(x+1),lg(x+3)成等差数列,则甲是乙的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x+y+8=0,圆O:x2+y2=36(O为原点),椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
2
2
,直线l被圆O截得的弦长等于椭圆短轴的长.
(1)求椭圆C的方程;
(2)过点(2,0)的直线l1与椭圆C相交于A,B两点,若椭圆C上存在点P,使
OP
=
OA
+
OB
,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn=10n-n2
(1)求数列{an}的通项公式;
(2)若bn=|an|,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(4x+a),g(x)=x,设h(x)=f(x)-g(x)
(Ⅰ)若h(x)是偶函数,求a的值;
(Ⅱ)若关于x的方程h(x)=0有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求棱长都为a的正四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
ax3+
1
2
bx2+(1-2a)x,a,b∈R,a≠0.
(1)若b=4a,求f(x)的单调递增区间;
(2)若曲线y=f(x)与x轴相切于异于原点的一点,且f(x)的极小值为-
4
3
a,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设实系数三次多项式P(x)=x3+ax2+bx+c有三个非零实数根.求证:6a3+10(a2-2b) 
3
2
-12ab≥27c.

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数a、m满足a≤1,0<m≤2
3
,函数f(x)=
amx-mx2
a+a(1-a)2m2
,x∈(0,a) 若存在a,m,x,使f(x)
3
2
,求所有的实数x的值.

查看答案和解析>>

同步练习册答案