精英家教网 > 高中数学 > 题目详情

已知命题p:对,函数y=lg(2x-m+1)有意义;命题q:指数函数f(x)=(5-2m)x为增函数.

(1)写出命题p的否定;

(2)若p∧q为真,求实数m的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列命题:①在函数y=cos(x-
π
4
)cos(x+
π
4
)
的图象中,相邻两个对称中心的距离为π;②函数y=
x+3
x-1
的图象关于点(-1,1)对称;③关于x的方程ax2-2ax-1=0有且仅有一个实数根,则实数a=-1;④已知命题p:对任意的x∈R,都有sinx≤1,则?p是:存在,使得sinx>1.其中所有真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①函数y=cos(x-
π
4
)cos(x+
π
4
)的图象中,相邻两个对称中心的距离为π;
②函数y=
x+3
x-1
的图象关于点(-1,1)对称;
③关于x的方程ax2-2ax-1=0有且仅有一个实数根,则实数a=-1;
④已知命题p:对任意的x∈R,都有sinx≤1,则非p:存在x∈R,使得sinx>1.
其中所有真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)

   (文科学生做)已知命题p:函数在R上存在极值;

命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有

为真,为假,试求实数a的取值范围。

 

(理科学生做)已知命题p:对,函数有意义;

命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有

为真,为假,试求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分16分)

   (文科学生做)已知命题p:函数在R上存在极值;

命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有

为真,为假,试求实数a的取值范围。

 

(理科学生做)已知命题p:对,函数有意义;

命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有

为真,为假,试求实数a的取值范围。

查看答案和解析>>

同步练习册答案