精英家教网 > 高中数学 > 题目详情
已知f(x)=x+
4
x
,当x∈[1,3]时的值域为[n,m],则m-n的值是(  )
分析:先对函数求导,可得f′(x)=1-
4
x2
,判断其在[1,3]上的符号可得f(x)的单调性,进而可得最小值即n的值,比较端点值的大小,可得最大值即m;进而可得答案.
解答:解:f(x)=x+
4
x
,则f′(x)=1-
4
x2

易得在[1,2]上,f′(x)<0,则f(x)是减函数,在[2,3]上,f′(x)>0,则f(x)是增函数,
则f(x)在[1,3]上最小值为f(2)=4,即n=4;
且f(1)=5,f(3)=
13
3
,有f(1)>f(3),
则f(x)在[1,3]上最大值为f(1)=5,即m=4;
m-n=5-4=1;
故选C.
点评:本题考查利用导数求函数在闭区间的最值,解题的关键在于正确求出导函数,并判断导函数在区间上的符号.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x+
bx
-3, x∈[1,2]

(1) b=2时,求f(x)的值域;
(2) b≥2时,f(x)的最大值为M,最小值为m,且满足:M-m≥4,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,则下列结论中正确的是(  )
A、函数y=f(x)•g(x)的最大值为1
B、函数y=f(x)•g(x)的对称中心是(
2
+
π
4
,0),k∈Z
C、当x∈[-
π
2
π
2
]
时,函数y=f(x)•g(x)单调递增
D、将f(x)的图象向右平移
π
2
单位后得g(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x-4,(x≥6)
f(x+2),(x<6)
,则f(3)=(  )
A、3B、2C、1D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下五个命题①y=sin2x+
9
sin2x
的最小值是6.②已知f(x)=
x-
11
x-
10
,则f(4)<f(3).③函数f(x)值域为(-∞,0],等价于f(x)≤0恒成立.④函数y=
1
x-1
在定义域上单调递减.⑤若函数y=f(x)的值域是[1,3],则函数F(x)=1-f(x+3)的值域是[-5,-3].其中真命题是:

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x+4,(x≤-1)
x2,(-1<x<3)
3x,(x≥3)
,则f(f(f(-2)))=
12
12

查看答案和解析>>

同步练习册答案