精英家教网 > 高中数学 > 题目详情
对于函数f(n)=
1+(-1)n
2
(n∈N*),我们可以发现f(n)有许多性质,如:f(2k)=1(k∈N*)等,下列关于f(n)的性质中一定成立的是(  )
A.f(n+1)-f(n)=1B.f(n+k)=f(n)(k∈N*
C.αf(n)=f(n+1)+αf(n)(α≠0)D.αf(n+1)=α-(α+1)f(n)(α≠0)
对于函数f(n)=
1+(-1)n
2
(n∈N*),当n=1,2,3,4,…时的函数值为:0,1,0,1,…
对于A:f(3)-f(2)=-1不成立,故错;
对于B:f(n+1)≠f(n)不成立,故错;
对于C:αf(n)=
α,n为偶数
1,n为奇数
,f(n+1)+αf(n)=
α,n为偶数
1,n为奇数
成立,故正确;
对于D:αf(n+1)=α-(α+1)f(n)(α≠0)不成立,故错;
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
x2+a
bx-c
(b,c∈N*)
有且仅有两个不动点0和2,且f(-2)<-
1
2

(1)求实数b,c的值;
(2)已知各项不为零的数列{an}的前n项之和为Sn,并且4Sn•f(
1
an
)=1
,求数列{an}的通项公式;
(3)求证:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•金华模拟)已知函数f(x)=lnx+ax2+x.
(1)若f(x)在(0,+∞)是增函数,求a的取值范围;
(2)已知a<0,对于函数f(x)图象上任意不同两点A(x1,y1),B(x2,y2),其中x2>x1,直线AB的斜率为k,记N(u,0),A1(x1,y1),B1(x2,y2),若
A1B1
A1N
(1≤λ≤2)
,求证:f′(u)<k.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)]
(n∈N*,且n≥2),令集合M={x|f2007(x)=x,x∈R},则集合M为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区一模)对于函数f(n)=
1+(-1)n
2
(n∈N*),我们可以发现f(n)有许多性质,如:f(2k)=1(k∈N*)等,下列关于f(n)的性质中一定成立的是(  )

查看答案和解析>>

同步练习册答案