精英家教网 > 高中数学 > 题目详情
6.在平行四边形ABCD中,$\stackrel{→}{AB}$+$\stackrel{→}{BC}$=(  )
A.$\stackrel{→}{AC}$B.$\stackrel{→}{BD}$C.$\stackrel{→}{CA}$D.$\stackrel{→}{DB}$

分析 利用向量平行四边形法则即可得出.

解答 解:由向量平行四边形法则可得:
$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$,
故选:A.

点评 本题考查了向量平行四边形法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.各项均不为0的数列{an}满足$\frac{{{a_{n+1}}({{a_n}+{a_{n+2}}})}}{2}={a_{n+2}}{a_n}$,且a2=2a6=$\frac{1}{5}$,则数列$\left\{{\frac{1}{a_n}}\right\}$的前10项和为$\frac{375}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.两条平行直线线3x+4y-9=0和6x+8y+2=0的距离是(  )
A.$\frac{8}{5}$B.2C.$\frac{11}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.利用微积分基本定理或定积分的几何意义求下列各函数的定积分:
(1)$\int_0^1{({x^2}-x)dx}$(2)$\int_1^3{|{x-2}|dx}$(3)$\int_0^1{\sqrt{1-{x^2}}dx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)是定义在R上的偶函数,且x∈[0,+∞)时,f′(x)<0,若不等式f(x3-x2+a)+f(-x3+x2-a)≥2f(1)对x∈[0,1]恒成立,则实数a的取值范围是(  )
A.$[-\frac{23}{27},1]$B.$[\frac{23}{27},1]$C.[1,3]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和${S_n}={2^{n+1}}-2$,数列{bn}满足bn=log2an,cn=an+bn
(1)求数列{an}的通项公式;
(2)求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设等差数列 {an} 的前 n 项和为 Sn,已知 ${({a}_{7}-1)}^{3}+2017({a}_{7}-1)=1$,${({a}_{2011}-1)}^{3}+2017({a}_{2011}-1)=-1$,则下列结论正确的是(  )
A.S2017=2017,a2011<a7B.S2017=2017,a2017>a7
C.S2012=-2017,a2017<a7D.S2017=-2017,a2017>a7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}满足:a1=1,$2{a_{n+1}}=2{a_n}+1\;,\;n∈{N^*}$则数列{an}=(  )
A.{an}是等比数列B.{an}不是等差数列C.a2=1.5D.S5=122

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若方程kx-lnx=0有两个实数根,则k的取值范围是(  )
A.(1,ln2)B.$({\frac{1}{e},e})$C.$({0,\frac{1}{e}})$D.(0,e)

查看答案和解析>>

同步练习册答案