精英家教网 > 高中数学 > 题目详情
设抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于P1,P2两点,已知|P1P2|=8.
(1)求抛物线C的方程;
(2)过点M(3,0)作方向向量为
d
=(1,a)
的直线与曲线C相交于A,B两点,求△FAB的面积S(a)并求其值域;
(3)设m>0,过点M(m,0)作直线与曲线C相交于A,B两点,问是否存在实数m使∠AFB为钝角?若存在,请求出m的取值范围;若不存在,请说明理由.
(1)由条件|P1P2|=8,可得2p=8,∴抛物线C的方程为y2=8x;….(4分)
(2)直线方程为y=a(x-3)代入y2=8x,∴ay2-8y-24a=0,….(6分)
△=64+96a2>0恒成立.
设A(x1,y1),B(x2,y2),则y1+y2=
8
a
y1y2=-24
,….(7分)
S=
1
2
|MF|•|y1-y2|=
2
4+6a2
|a|
=2
6+
4
a2
,….(9分)
S∈(2
6
,+∞)
.….(10分)
(3)设所作直线的方向向量为
d
=(p,1)
,则直线方程为py=x-m代入y2=8x得y2-8py-8m=0,
设A(x1,y1),B(x2,y2),y1+y2=8p,y1y2=-8m.….(12分)
又F(2,0),则
FA
=
(x1-2,y1),
FB
=(x2-2,y2)

∵∠AFB为钝角,∴
FA
FB
<0
,∴(x1-2)(x2-2)+y1y2<0,….(14分)
即x1x2-2(x1+x2)+4-8m<0,∴
(y1y2)2
64
-2[p(y1+y2)+2m]+4-8m<0

∴m2-12m+4<16p2,该不等式对任意实数p恒成立,….(16分)
因此m2-12m+4<0,∴6-4
2
<m<6+4
2
.….(17分)
又m≠2,因此,当m∈(6-4
2
,2)∪(2,6+4
2
)
时满足条件.….(18分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设抛物线C:y2=2px(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点,若△BDF为等边三角形,△ABD的面积为6,则p的值为
3
3
,圆F的方程为
(x-
3
2
)2+y2=12
(x-
3
2
)2+y2=12

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宝山区一模)设抛物线C:y2=2px(p>0)的焦点为F,经过点F的直线与抛物线交于A、B两点.
(1)若p=2,求线段AF中点M的轨迹方程;
(2)若直线AB的方向向量为
n
=(1,2)
,当焦点为F(
1
2
,0)
时,求△OAB的面积;
(3)若M是抛物线C准线上的点,求证:直线MA、MF、MB的斜率成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•长宁区二模)设抛物线C:y2=2px(p>0)的焦点为F,过F且垂直于x轴的直线与抛物线交于P1,P2两点,已知|P1P2|=8.
(1)求抛物线C的方程;
(2)过点M(3,0)作方向向量为
d
=(1,a)
的直线与曲线C相交于A,B两点,求△FAB的面积S(a)并求其值域;
(3)设m>0,过点M(m,0)作直线与曲线C相交于A,B两点,问是否存在实数m使∠AFB为钝角?若存在,请求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄浦区二模)设抛物线C:y2=2px(p>0)的焦点为F,经过点F的动直线l交抛物线C于点A(x1,y1),B(x2,y2)且y1y2=-4.
(1)求抛物线C的方程;
(2)若
OE
=2(
OA
+
OB
)
(O为坐标原点),且点E在抛物线C上,求直线l倾斜角;
(3)若点M是抛物线C的准线上的一点,直线MF,MA,MB的斜率分别为k0,k1,k2.求证:当k0为定值时,k1+k2也为定值.

查看答案和解析>>

同步练习册答案