【题目】在平面直角坐标系
中,
的离心率为
,且点
在此椭圆上.
(1)求椭圆
的标准方程;
(2)设直线
与圆
相切于第一象限内的点
,且
与椭圆
交于
.两点.若
的面积为
,求直线
的方程.
科目:高中数学 来源: 题型:
【题目】据长期统计分析,某货物每天的需求量
在17与26之间,日需求量
(件)的频率
分布如下表所示:
需求量 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
频率 | 0.12 | 0.18 | 0.23 | 0.13 | 0.10 | 0.08 | 0.05 | 0.04 | 0.04 | 0.03 |
已知其成本为每件5元,售价为每件10元.若供大于求,则每件需降价处理,处理价每件2元.假设每天的进货量必需固定.
(1)设每天的进货量为
,视日需求量
的频率为概率
,求在每天进货量为
的条件下,日销售量
的期望值
(用
表示);
(2)在(1)的条件下,写出
和
的关系式,并判断
为何值时,日利润的均值最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,函数F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=![]()
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范围;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在区间[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】狄利克雷函数是高等数学中的一个典型函数,若
,则称
为狄利克雷函数.对于狄利克雷函数
,给出下面4个命题:①对任意
,都有
;②对任意
,都有
;③对任意
,都有
,
;④对任意
,都有
.其中所有真命题的序号是( )
A. ①④ B. ②③ C. ①②③ D. ①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】哈三中团委组织了“古典诗词”的知识竞赛,从参加考试的学生中抽出60名学生(男女各30名),将其成绩分成六组
,
,…,
,其部分频率分布直方图如图所示.
![]()
(Ⅰ)求成绩在
的频率,补全这个频率分布直方图,并估计这次考试的众数和中位数;
(Ⅱ)从成绩在
和
的学生中选两人,求他们在同一分数段的概率;
(Ⅲ)我们规定学生成绩大于等于80分时为优秀,经统计男生优秀人数为4人,补全下面表格,并判断是否有99%的把握认为成绩是否优秀与性别有关?
优秀 | 非优秀 | 合计 | |
男 | 4 | 30 | |
女 | 30 | ||
合计 | 60 |
![]()
| 0.025 | 0.010 | 0.005 | 0.001 |
| 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,梯形
中,
,
,
,
为
的中点,将
沿
翻折,构成一个四棱锥
,如图2.
![]()
(1)求证:异面直线
与
垂直;
(2)求直线
与平面
所成角的大小;
(3)若三棱锥
的体积为
,求点
到平面
的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com