精英家教网 > 高中数学 > 题目详情
已知函数f(x)是偶函数,并且对于定义域内任意的x,满足f(x+2)=-
1f(x)
,当1<x<2时,f(x)=x,则f(2010.5)=
 
分析:因为函数满足f(x+2)=-
1
f(x)
则f(2010.5)=f(2.5)=f(-1.5)又因为函数是偶函数则得当-2<x<-1时,f(x)=-x得出结论.
解答:解:根据f(x+2)=-
1
f(x)
得:f(2010.5)=f(2006.5)=f(2002.5)=f(1998.5)=…=f(2.5)
又因为f(x)是偶函数可知:函数关于y轴对称.而当1<x<2时,f(x)=x
则-2<x<-1时,f(x)=-x
所以f(2010.5)=f(2.5)=f(-1.5)=1.5
故答案为:1.5.
点评:考查函数奇偶性的应用能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)判断函数的奇偶性;
(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2,
(1)求函数f(x)和g(x);
(2)设h(x)=f(x)+g(x),判断函数h(x)的奇偶性;
(3)求函数h(x)在(0,
2
]
上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2.
(1)求函数f(x)和g(x);    
(2)判断函数f(x)+g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的函数,若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)判断函数f(x)在[-1,1]上是增函数还是减函数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2.
(1)求函数f(x)和g(x);
(2)判断函数f(x)+g(x)的奇偶性.
(3)求函数f(x)+g(x)在(0,
2
]上的最小值.

查看答案和解析>>

同步练习册答案